Skip to main content

Advertisement

Log in

Making socioeconomic health inequality comparisons when health concentration curves intersect

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

Among the various methods adopted to compare health inequality, Makdissi and Yazbeck (J Health Econ 34:84–95, 2014) developed positional stochastic dominance conditions to identify an ordering. To reach a conclusion, their rules require that the (generalized) health concentration curve of the dominant distribution lie above that of the dominated one. However, it is frequently observed in practice that these curves intersect. Our paper proposes new criteria to cope with this problem by allowing a relatively small violation of the condition proposed by Makdissi and Yazbeck (2014). We characterize our conditions by linking them with some ethical constraints of the weight functions. We further use individual data for Côte d’Ivoire and Guinea from the Demographic and Health Survey to demonstrate the usefulness of our newly-proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For example, see Jones et al. (2014); Gravel et al. (2019) and Van de Gaer and Ramos (2020).

  2. For example, see Wagstaff et al. (1991); Kakwani et al. (1997), Wagstaff (2002 and 2005), Clarke et al. (2002); Allison and Foster (2004); Erreygers (2009a) and Erreygers (2009b); Alkire and Foster (2011); Erreygers and Van Ourti (2011) and Zheng (2011).

  3. The concept of higher order stochastic dominance has been applied to perform inequality comparisons with Lorenz curves. For example, see Davies and Hoy (1995); Chiu (2007); Aaberge (2009) and Chiu (2020).

  4. Complementing Makdissi and Yazbeck (2014); Khaled et al. (2018) introduced generalized health range curves to correspond to the principle of symmetry around the median introduced by Erreygers et al. (2012).

  5. The decreasing weight functions indicate that the policy-makers’ attitudes towards inequality satisfy the second-order ethical principle. This principle states that a mean-preserving transfer of health from a person with a lower rank in terms of socioeconomic status to another person with a higher rank in terms of socioeconomic status results in an increase in health inequality.

  6. We thank an anonymous reviewer for pointing out this example as well as for the insights gained form it.

  7. To be specific, we include the second-order rules proposed by Makdissi and Yazbeck (2014) as a special case. The rules proposed by Makdissi and Yazbeck (2014) have different orders. The second order places conditions on the sign of the weight function and the first derivative of the weight function, while the higher orders have further assumptions regarding the sign of the higher derivatives of the weight function. Our rules do not impose any condition on the second or higher derivatives of the weight function.

  8. Section 3.1 provides a detailed comparison.

  9. For example, see Bali et al. (2009, 2013) and Levy (2016).

  10. If a distribution F dominates another distribution G in terms of almost first-degree stochastic dominance, then the distribution F dominates the distribution G in terms of generalized almost second-degree stochastic dominance, but not vice versa.

  11. For an ill-health variable, there is an opposite conclusion.

  12. The second-order ethical principle has been described and named the “principle of income-related health transfer” by Bleichrodt and Van Doorslaer (2006).

  13. Tsetlin et al. (2015) placed constraints on the utility functions, whereas in this paper we add constraints to the weight functions.

  14. From the children’s recode file, we select the following variables: V191 (wealth index factor score), HW1 (age in months) and HW70 (height-for-age z-score). After filtering out the missing data, we obtain 3286 and 3221 children less than 60 months of age in Côte d’Ivoire and Guinea, respectively.

  15. Following Khaled et al. (2018), the health status of the individual is based on an ill-health variable.

  16. In Appendix 4, we provide the details on how to solve the optimization problem in Eq. (8).

  17. From Eq. (3), the constraint \(\frac{\sup \left\{ -w^{\prime }\left( p\right) \right\} }{\inf \left\{ -w^{\prime }\left( p\right) \right\} }\le \frac{1}{\varepsilon _{2}}-1\) limits the ratio of any two marginal weights. If \(\varepsilon _{2}\) is assumed to be 0, 0.02, 0.04 , 0.06, 0.08 and 0.10, then the upper bound of \(\frac{\sup \left\{ -w^{\prime }\left( p\right) \right\} }{\inf \left\{ -w^{\prime }\left( p\right) \right\} }\) is associated with \(\infty\), 49, 24, 15.67, 11.50 and 9, respectively. These results are reported in the last column of Table 1.

  18. From Eq. (3), the constraint \(\frac{\sup \left\{ w\left( p\right) \right\} }{\inf \left\{ w\left( p\right) \right\} }\le \frac{1}{ \varepsilon _{1}}-1\) limits the ratio of any two weights. If the critical values of \(\varepsilon _{1}\) are determined as 0.24, 0.15, 0.11, 0.09 , 0.06 and 0.04, then the upper bounds of \(\frac{\sup \left\{ w\left( p\right) \right\} }{\inf \left\{ w\left( p\right) \right\} }\) are 3.11, 5.78, 7.73, 10.55, 15.49 and 26.88, respectively. These results are reported in the fourth column of Table 1.

References

  • Aaberge R (2009) Ranking intersecting Lorenz curves. Soc Choice Welf 33:235–259

    Article  Google Scholar 

  • Alkire S, Foster J (2011) Counting and multidimensional poverty measurement. J Public Econ 95:476–487

    Article  Google Scholar 

  • Allison RA, Foster JE (2004) Measuring health inequality using qualitative data. J Health Econ 23:505–524

    Article  Google Scholar 

  • Bali TG, Brown SJ, Demirtas KO (2013) Do hedge funds outperform stocks and bonds? Manage Sci 59:1887–1903

    Article  Google Scholar 

  • Bali TG, Demirtas KO, Levy H, Wolf A (2009) Bonds versus stocks: Investors’ age and risk taking. J Monet Econ 56:817–830

    Article  Google Scholar 

  • Bleichrodt H, Van Doorslaer E (2006) A welfare economics foundation for health inequality measurement. J Health Econ 25:945–957

    Article  Google Scholar 

  • Chiu WH (2007) Intersecting Lorenz curves, the degree of downside inequality aversion, and tax reforms. Soc Choice Welf 28:375–399

    Article  Google Scholar 

  • Chiu WH (2020) Intersecting Lorenz curves and aversion to inverse downside inequality. Soc Choice Welf 1–22

  • Clarke PM, Gerdtham UG, Johannesson M, Bingefors K, Smith L (2002) On the measurement of relative and absolute income-related health inequality. Soc Sci Med 55:1923–1928

    Article  Google Scholar 

  • Davies J, Hoy M (1995) Making inequality comparisons when Lorenz curves intersect. Am Econ Rev 85:980–986

    Google Scholar 

  • Denuit MM, Huang RJ, Tzeng LY (2014) Bivariate almost stochastic dominance. Econ Theor 57:377–405

    Article  Google Scholar 

  • Erreygers G (2009a) Correcting the concentration index. J Health Econ 28:504–515

    Article  Google Scholar 

  • Erreygers G (2009b) Correcting the concentration index: A reply to Wagstaff. J Health Econ 28:521–524

    Article  Google Scholar 

  • Erreygers G, Clarke P, Van Ourti T (2012) “Mirror, mirror, on the wall, who in this land is fairest of all?” -Distributional sensitivity in the measurement of socioeconomic inequality of health. J Health Econ 31:257–270

    Article  Google Scholar 

  • Erreygers G, Van Ourti T (2011) Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: A recipe for good practice. J Health Econ 30:685–694

    Article  Google Scholar 

  • Gravel N, Magdalou B, Moyes P (2019) Inequality measurement with an ordinal and continuous variable. Soc Choice Welf 52:453–475

    Article  Google Scholar 

  • Hosseinpoor AR, Bergen N, Schlotheuber A, Grove J (2018) Measuring health inequalities in the context of sustainable development goals. Bull World Health Organ 96:654–659

    Article  Google Scholar 

  • Jones AM, Roemer JE, Rosa Dias P (2014) Equalising opportunities in health through educational policy. Soc Choice Welf 43:521–545

    Article  Google Scholar 

  • Kakwani N, Wagstaff A, Van Doorslaer E (1997) Socioeconomic inequalities in health: measurement, computation and statistical inference. J Econ 77:87–103

    Article  Google Scholar 

  • Khaled MA, Makdissi P, Yazbeck M (2018) Income-related health transfers principles and orderings of joint distributions of income and health. J Health Econ 57:315–331

    Article  Google Scholar 

  • Leshno M, Levy H (2002) Preferred by “all” and preferred by “most” decision makers: Almost stochastic dominance. Manage Sci 48:1074–1085

    Article  Google Scholar 

  • Levy H (2016) Aging population, retirement, and risk taking. Manage Sci 62:1415–1430

    Article  Google Scholar 

  • Mackenbach JP, Kunst AE (1997) Measuring the magnitude of socio-economic inequalities in health: An overview of available measures illustrated with two examples from Europe. Soc Sci Med 44:757–771

    Article  Google Scholar 

  • Makdissi P, Yazbeck M (2014) Measuring socioeconomic health inequalities in presence of multiple categorical information. J Health Econ 34:84–95

    Article  Google Scholar 

  • Makdissi P, Yazbeck M (2016) Avoiding blindness to health status in health achievement and health inequality measurement. Soc Sci Med 171:39–47

    Article  Google Scholar 

  • Resolution A/RES/70/1. Transforming our world: the 2030 agenda for sustainable development. In: Seventieth United Nations General Assembly, New York, 25 September (2015) New York: United Nations; 2015. Available from: http://www.un.org/ga/search/view\_doc.asp?symbol=A/RES/70/1&Lang=E [cited 2018 May 18]

  • Tsetlin I, Winkler RL, Huang RJ, Tzeng LY (2015) Generalized almost stochastic dominance. Oper Res 63:363–377

    Article  Google Scholar 

  • Tzeng LY, Huang RJ, Shih PT (2013) Revisiting almost second-degree stochastic dominance. Manage Sci 59:1250–1254

    Article  Google Scholar 

  • Van de Gaer D, Ramos X (2020) Measurement of inequality of opportunity based on counterfactuals. Soc Choice Welf 55:595–627

    Article  Google Scholar 

  • Wagstaff A (2002) Inequality aversion, health inequalities and health achievement. J Health Econ 21:627–641

    Article  Google Scholar 

  • Wagstaff A (2005) The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. Health Econ 14:429–432

    Article  Google Scholar 

  • Wagstaff A, Paci P, Van Doorslaer E (1991) On the measurement of inequalities in health. Soc Sci Med 33:545–557

    Article  Google Scholar 

  • Wagstaff A, Van Doorslaer E, Paci P (1989) Equity in the finance and delivery of health care: Some tentative cross-country comparisons. Oxford Rev Econ Policy 5:89–112

    Article  Google Scholar 

  • Zheng B (2011) A new approach to measure socioeconomic inequality in health. J Econ Ineq 9:555–577

    Article  Google Scholar 

  • Zheng B (2018) Almost Lorenz dominance. Soc Choice Welf 51:51–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was financially supported by the Center for Research in Econometric Theory and Applications [Grant 109L9002] from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan. The authors gratefully acknowledge financial support from the Ministry of Science and Technology in Taiwan (MOST 109-2511-H-038-004-, MOST 110-2634-F-002-045- and MOST 107-2410-H-008-012-MY3) acknowledge financial support from the Ministry of Science and Technology in Taiwan [MOST107-3017-F-002-004] and [MOST107-2410-H-008 -012 -MY3].

Appendix

Appendix

1.1 Proof of Theorem 2

  1. (1)

    “If” part: We show that if

    $$\begin{aligned} GC_{\widetilde{H}}^{2}\left( 1\right) \ge GC_{H}^{2}\left( 1\right) \end{aligned}$$
    (A.1)

    and

    $$\begin{aligned}&\underset{D}{\max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D} \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp}{\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}}\right\} \nonumber \\&\quad \le \frac{\varepsilon _{1}}{1-2\varepsilon _{1}}\left[ GC_{\widetilde{H} }^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] , \end{aligned}$$
    (A.2)

    then \(A(\widetilde{H})-A\left( H\right) \ge 0\) \(\forall w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\).

By integration by parts, we have

$$\begin{aligned}&A(\widetilde{H})-A\left( H\right) \nonumber \\&\quad =\int _{0}^{1}w\left( p\right) \left[ \widetilde{H}\left( p\right) -H\left( p\right) \right] dp \nonumber \\&\quad = w\left( 1\right) \left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] -\int _{0}^{1}w^{\prime }\left( p\right) \left[ GC_{\widetilde{H}}^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp \nonumber \\&\quad =w\left( 1\right) \left\{ \left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] -\int _{0}^{1}\left[ -\frac{w^{\prime }\left( p\right) }{w\left( 1\right) }\right] \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp\right\} . \end{aligned}$$
(A.3)

By definition, \(w^{\prime }\left( p\right) <0\) and \(\frac{\sup \left\{ w\left( p\right) \right\} }{\inf \left\{ w\left( p\right) \right\} }\le \frac{1}{\varepsilon _{1}}-1\) for all \(p\in \left[ 0,1\right]\). Since \(\frac{w\left( 0\right) }{w\left( 1\right) }\) is bounded by \(\frac{1}{ \varepsilon _{1}}-1\), it follows that \(\int _{0}^{1}\left[ -\frac{w^{\prime }\left( p\right) }{w\left( 1\right) }\right] dp=\frac{w\left( 0\right) }{ w\left( 1\right) }-1\le \frac{1}{\varepsilon _{1}}-2\).

Let \(k\left( p\right) =-\frac{w^{\prime }\left( p\right) }{w\left( 1\right) } \left( \frac{\varepsilon _{1}}{1-2\varepsilon _{1}}\right)\). Thus, \(\int _{0}^{1}k\left( p\right) dp\le 1\) and \(\frac{\sup \left\{ k\left( p\right) \right\} }{\inf \left\{ k\left( p\right) \right\} }\le \frac{1}{ \varepsilon _{2}}-1\). Equation (A.3) can be rewritten as

$$\begin{aligned} A(\widetilde{H})-A\left( H\right)= &\, w\left( 1\right) \left( \frac{ 1-2\varepsilon _{1}}{\varepsilon _{1}}\right) \left\{ \frac{\varepsilon _{1} }{1-2\varepsilon _{1}}\left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] \right. \nonumber \\&\left. -\int _{0}^{1}k\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp\right\} . \end{aligned}$$
(A.4)

According to Eq. (A.4), if

$$\begin{aligned} \int _{0}^{1}k\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp\le \frac{\varepsilon _{1}}{ 1-2\varepsilon _{1}}\left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] , \end{aligned}$$
(A.5)

then \(A(\widetilde{H})-A\left( H\right) \ge 0\).

If \(\int _{0}^{1}k\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp\le 0\), then the above condition holds. On the other hand, if \(\int _{0}^{1}k\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp>0\) and \(\int _{0}^{1}k\left( p\right) dp<1\), then

$$\begin{aligned} \int _{0}^{1}k\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp= & {} \int _{0}^{1}\left( \int _{0}^{1}k\left( p\right) dp\right) \frac{k\left( p\right) }{\left( \int _{0}^{1}k\left( p\right) dp\right) }\left[ GC_{H}^{2}\left( p\right) \right. \\&\left. -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp \\\le & {} \int _{0}^{1}\frac{k\left( p\right) }{\left( \int _{0}^{1}k\left( p\right) dp\right) }\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H} }^{2}\left( p\right) \right] dp \\= & {} \int _{0}^{1}k^{*}\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp, \end{aligned}$$

where \(k^{*}\left( p\right) =\frac{k\left( p\right) }{ \int _{0}^{1}k\left( p\right) dp}\ge 0\), \(\int _{0}^{1}k^{*}\left( p\right) dp=1\) and \(\frac{\sup \left\{ k^{*}\left( p\right) \right\} }{ \inf \left\{ k^{*}\left( p\right) \right\} }\le \frac{1}{\varepsilon _{2}}-1\).

The maximum of \(\int _{0}^{1}k^{*}\left( p\right) \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp\) can be written as

$$\begin{aligned} \underset{D}{\max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D}^{{}}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp}{\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}} \right\} , \end{aligned}$$
(A.6)

where \(D\subset \left[ 0,1\right]\) and \(\left| D\right| =\int _{D}dp\) . To see it, let

$$\begin{aligned} k^{*}\left( p\right) =\left\{ \begin{array}{ll} 1-\varepsilon _{2}, &{}\quad \text {if }p\in D \\ \varepsilon _{2}, &{} \quad \text {if }p\notin D \end{array} \right. \end{aligned}$$

and therefore the term \(\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}\) in the denominator of Eq. (A.6) is the normalization factor which ensures that \(\int _{0}^{1}k^{*}\left( p\right) dp=1\).

Thus, according to Eq. (A.6), if

$$\begin{aligned}&\underset{D}{\max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D} \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp}{\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}}\right\} \\&\quad \le \frac{\varepsilon _{1}}{1-2\varepsilon _{1}}\left[ GC_{\widetilde{H} }^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] , \end{aligned}$$

then \(A(\widetilde{H})-A\left( H\right) \ge 0\). The sufficient condition for the Theorem is proven.

  1. (2)

    “Only if” part: We show that if

    $$\begin{aligned} GC_{\widetilde{H}}^{2}\left( 1\right) <GC_{H}^{2}\left( 1\right) \end{aligned}$$
    (A.7)

    or

    $$\begin{aligned}&\underset{D}{\max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D} \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp}{\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}}\right\} \nonumber \\&\quad >\frac{\varepsilon _{1}}{1-2\varepsilon _{1}}\left[ GC_{\widetilde{H} }^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] , \end{aligned}$$
    (A.8)

    then there exists a \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(A(\widetilde{H})-A\left( H\right) <0\).

We first show that if Eq. (A.7) holds, then \(\exists w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(A(\widetilde{H})-A\left( H\right) <0\). Let \(\theta\) be a constant, and define a weight function \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(w\left( 0\right) =\frac{1}{1-\frac{\theta }{2}}\), \(w\left( 1\right) =\frac{1-\theta }{1-\frac{\theta }{2}}\), and \(w^{\prime }\left( p\right) =-\theta\). To guarantee \(w\left( 0\right)>w\left( 1\right) >0\) and \(w^{\prime }\left( p\right) <0\), we require that \(\theta\) lie between 0 and 1. By integration by parts, we have

$$\begin{aligned} A(\widetilde{H})-A\left( H\right)= & {} w\left( 1\right) \left[ GC_{\widetilde{H }}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] -\int _{0}^{1}w^{ \prime }\left( p\right) \left[ GC_{\widetilde{H}}^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp \\= & {} \left( \frac{1-\theta }{1-\frac{\theta }{2}}\right) \left[ GC_{\widetilde{ H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] +\theta \int _{0}^{1}\left[ GC_{\widetilde{H}}^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp \\= & {} \left( \frac{1}{1-\frac{\theta }{2}}\right) \left[ GC_{\widetilde{H} }^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] \\&+\theta \left\{ \int _{0}^{1}\left[ GC_{\widetilde{H}}^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp-\left( \frac{1}{1-\frac{\theta }{2}} \right) \left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] \right\} . \end{aligned}$$

We assume that \(GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) <0\), and thus we have

$$\begin{aligned} A(\widetilde{H})-A\left( H\right) <\int _{0}^{1}\left[ GC_{\widetilde{H} }^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp-\left( \frac{1}{1- \frac{\theta }{2}}\right) \left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] . \end{aligned}$$

Since \(GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) <0\), if

$$\begin{aligned} \theta >2\left\{ 1-\frac{\left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] }{\int _{0}^{1}\left[ GC_{\widetilde{H} }^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp}\right\} , \end{aligned}$$

then \(A(\widetilde{H})-A\left( H\right) <0\).

Next, we show that if Eq. (A.8) holds, then \(\exists w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(A(\widetilde{H})-A\left( H\right) <0\). If the LHS of Eq. (A.8) is positive, then Eq. (A.8) holds since Eq. (A.7) holds. On the other hand, if the LHS of Eq. (A.8) is nonpositive, let

$$\begin{aligned} D^{*}=\underset{D}{\arg \max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H} }^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp}{ \left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}} \right\} , \end{aligned}$$
(A.9)

then we consider a weight function \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(w\left( 0\right) =\frac{ 1-\varepsilon _{1}}{4}\), \(w\left( 1\right) =\frac{\varepsilon _{1}}{4}\), and

$$\begin{aligned} w^{\prime }\left( p\right) =-\frac{1-2\varepsilon _{1}}{4}\frac{1}{\left( 1-2\varepsilon _{2}\right) D^{*}+\varepsilon _{2}}\cdot \left\{ \begin{array}{ll} \left( 1-\varepsilon _{2}\right) , &{}\quad \text {if }p\in D^{*} \\ \varepsilon _{2}, &{}\quad \text {if }p\notin D^{*} \end{array} \right. . \end{aligned}$$

This weight function belongs to \(W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\). By integration by parts, we have

$$\begin{aligned} A(\widetilde{H})-A\left( H\right)= & {} w\left( 1\right) \left[ GC_{\widetilde{H }}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] -\int _{0}^{1}w^{ \prime }\left( p\right) \left[ GC_{\widetilde{H}}^{2}\left( p\right) -GC_{H}^{2}\left( p\right) \right] dp \\= & {} \frac{\varepsilon _{1}}{4}\left[ GC_{\widetilde{H}}^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] \\&-\frac{1-2\varepsilon _{1}}{4}\frac{1}{\left( 1-2\varepsilon _{2}\right) \left| D^{*}\right| +\varepsilon _{2}}\left\{ \left( 1-2\varepsilon _{2}\right) \int _{D^{*}}^{{}}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp\right. \\&\left. +\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp\right\} , \end{aligned}$$

where \(\left| D^{*}\right| =\int _{D^{*}}dp\). Thus, by the definition of \(D^{*}\), if

$$\begin{aligned}&\underset{D}{\max }\left\{ \frac{\left( 1-2\varepsilon _{2}\right) \int _{D} \left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp+\varepsilon _{2}\int _{0}^{1}\left[ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right] dp}{\left( 1-2\varepsilon _{2}\right) \left| D\right| +\varepsilon _{2}}\right\} \\&\quad >\frac{\varepsilon _{1}}{1-2\varepsilon _{1}}\left[ GC_{\widetilde{H} }^{2}\left( 1\right) -GC_{H}^{2}\left( 1\right) \right] , \end{aligned}$$

then \(A(\widetilde{H})-A\left( H\right) <0\). The necessary condition for the Theorem is proven.

1.2 Proof of Corollary 1

If \(\varepsilon _{2}=0\), by Theorem 2, the numerator of the LHS of Eq. (8) becomes

$$\begin{aligned} \underset{D}{\max }\left\{ \frac{\int _{D}\left[ GC_{H}^{2}\left( p\right) -GC_{\widetilde{H}}^{2}\left( p\right) \right] dp}{\left| D\right| } \right\} . \end{aligned}$$

By attaching all the weight to max \(\left\{ GC_{H}^{2}\left( p\right) -GC_{ \widetilde{H}}^{2}\left( p\right) \right\}\), we obtain the results.

1.3 Proof of Theorem 4

  1. (1)

    “If” part: We show that if \(\frac{\int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) } \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp}{\int \left| C_{\widetilde{H}}^{2}\left( p\right) -C_{H}^{2}\left( p\right) \right| dp}\le \varepsilon _{2}\), then \(I(\widetilde{H} )-I\left( H\right) \le 0\) \(\forall w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\). By integration by parts, we have

    $$\begin{aligned} I(\widetilde{H})-I\left( H\right)= & {} \int _{0}^{1}\left[ 1-w\left( p\right) \right] \left[ \frac{\widetilde{H}\left( p\right) }{\mu _{\widetilde{H}}}- \frac{H\left( p\right) }{\mu _{H}}\right] dp \nonumber \\= & {} \left[ 1-w\left( 1\right) \right] \left[ C_{\widetilde{H}}^{2}\left( 1\right) -C_{H}^{2}\left( 1\right) \right] -\int _{0}^{1}\left[ -w^{\prime }\left( p\right) \right] \left[ C_{\widetilde{H}}^{2}\left( p\right) -C_{H}^{2}\left( p\right) \right] dp \nonumber \\= & {} \int _{0}^{1}\left[ -w^{\prime }\left( p\right) \right] \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp. \end{aligned}$$
    (A.10)

    We then divide the integral into two sets. The first set is defined over ranges where \(C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right)\). The second set is defined over ranges where \(C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right)\). Equation (A.10 ) can be written as

    $$\begin{aligned} I(\widetilde{H})-I\left( H\right)= & {} \int _{C_{\widetilde{H}}^{2}\left( p\right)<C_{H}^{2}\left( p\right) }\left[ -w^{\prime }\left( p\right) \right] \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp \nonumber \\&+\int _{C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) } \left[ -w^{\prime }\left( p\right) \right] \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp \nonumber \\\le & {} \sup \left\{ -w^{\prime }\left( p\right) \right\} \int _{C_{\widetilde{ H}}^{2}\left( p\right)<C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp \nonumber \\&+\inf \left\{ -w^{\prime }\left( p\right) \right\} \int _{C_{\widetilde{H} }^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp \nonumber \\= & {} \inf \left\{ -w^{\prime }\left( p\right) \right\} \left\{ \frac{\sup \left\{ -w^{\prime }\left( p\right) \right\} }{\inf \left\{ -w^{\prime }\left( p\right) \right\} }\int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H} }^{2}\left( p\right) \right] dp\right. \nonumber \\&\left. +\int _{C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp\right\} . \end{aligned}$$
    (A.11)

    Since \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\), by definition, we have \(\frac{\sup \left\{ -w^{\prime }\left( p\right) \right\} }{\inf \left\{ -w^{\prime }\left( p\right) \right\} }\le \frac{1}{ \varepsilon _{2}}-1\). Therefore,

    $$\begin{aligned} I(\widetilde{H})-I\left( H\right)\le & {} \inf \left\{ -w^{\prime }\left( p\right) \right\} \left\{ \left( \frac{1}{\varepsilon _{2}}-1\right) \int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp\right. \nonumber \\&\left. +\int _{C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp\right\} . \end{aligned}$$
    (A.12)

Thus, according to Eq. (A.12), if

$$\begin{aligned} \left( \frac{1}{\varepsilon _{2}}-1\right) \int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{ \widetilde{H}}^{2}\left( p\right) \right] dp+\int _{C_{\widetilde{H} }^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp\le 0, \end{aligned}$$

or,

$$\begin{aligned} \frac{\int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) } \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp}{\int \left| C_{\widetilde{H}}^{2}\left( p\right) -C_{H}^{2}\left( p\right) \right| dp}\le \varepsilon _{2}, \end{aligned}$$

then \(I(\widetilde{H})-I\left( H\right) \le 0\). The sufficient condition for the Theorem is proven.

  1. (2)

    “Only if” part: We show that if \(\frac{\int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp}{\int \left| C_{\widetilde{H}}^{2}\left( p\right) -C_{H}^{2}\left( p\right) \right| dp}>\varepsilon _{2}\), then there exists a \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(I(\widetilde{H})-I\left( H\right) >0\). Take a weight function \(w\in W_{2}\left( \varepsilon _{1},\varepsilon _{2}\right)\) such that \(w\left( 0\right) =\frac{1-\varepsilon _{1}}{4}\), \(w\left( 1\right) =\frac{ \varepsilon _{1}}{4}\), and

    $$\begin{aligned} w^{\prime }\left( p\right) =\left\{ \begin{array}{ll} -(1-\varepsilon _{2}), &{}\quad \text {if }C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) \\ -\varepsilon _{2}, &{}\quad \text {if }C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) \end{array} \right. . \end{aligned}$$

    From Eq. (A.10), we have

    $$\begin{aligned} I(\widetilde{H})-I\left( H\right)= & {} \int _{0}^{1}\left[ -w^{\prime }\left( p\right) \right] \left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H} }^{2}\left( p\right) \right] dp \\= & {} (1-\varepsilon _{2})\int _{C_{\widetilde{H}}^{2}\left( p\right)<C_{H}^{2}\left( p\right) }^{{}}\left[ C_{H}^{2}\left( p\right) -C_{ \widetilde{H}}^{2}\left( p\right) \right] dp \\&+\varepsilon _{2}\int _{C_{\widetilde{H}}^{2}\left( p\right) \ge C_{H}^{2}\left( p\right) }^{{}}\left[ C_{H}^{2}\left( p\right) -C_{ \widetilde{H}}^{2}\left( p\right) \right] dp \\= & {} \int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }^{{}}\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp \\&-\varepsilon _{2}\int _{0}^{1}\left| C_{H}^{2}\left( p\right) -C_{ \widetilde{H}}^{2}\left( p\right) \right| dp. \end{aligned}$$

We assume that \(\int _{C_{\widetilde{H}}^{2}\left( p\right) <C_{H}^{2}\left( p\right) }\left[ C_{H}^{2}\left( p\right) -C_{\widetilde{H}}^{2}\left( p\right) \right] dp>\varepsilon _{2}\int \left| C_{\widetilde{H} }^{2}\left( p\right) -C_{H}^{2}\left( p\right) \right| dp\), and thus we have \(I(\widetilde{H})-I\left( H\right) >0\). The necessary condition for the Theorem is proven.

1.4 Method of implementing Eq. (8)

We proceed to maximize the LHS of Eq. (8). To implement the scheme, we need to evaluate the integral numerically. The idea is to divide the integration interval [0, 1] into a large number of small intervals, calculate \(GC_{H}^{2}\left( p\right) -GC_{\widetilde{H} }^{2}\left( p\right)\) for each, and determine which one (or combination), D, is optimal when the LHS reaches its maximum. We propose three main steps to implement this framework as follows.

First, the interval [0, 1] can be partitioned into N subintervals with increment \(\Delta p=1/N\). Let us define \(p_{i}=i/N\) for \(i=0\), 1, ..., N . There are \(N+1\) points between 0 and 1. Note that a good approximation is achieved by making N sufficiently large. In our paper, we assume that \(N=10{,}000\).

Second, for each point \(p_{i}\), we calculate the difference between two generalized concentration curves. From this we obtain \(GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right)\) for each i. What kind of subset \(D\in \left\{ p_{0}\text {, }p_{1} , \ldots , p_{N}\right\}\) should be chosen for optimization? Since there will be \(2^{N+1}\) different combinations from \(N+1\) points, we need to deal with this problem more effectively when N is extremely large.

Third, we develop an integer linear programming technique to solve for the optimal solution D. Let \(x_{i}\) be a binary variable with value 1 if \(p_{i}\) is selected, and 0 otherwise. The integer programming problem can be written as

$$\begin{aligned} \underset{x_{1},x_{2},\ldots ,x_{N}}{\max }\frac{\left( 1-2\varepsilon _{2}\right) \left\{ \sum \limits _{i=1}^{N}x_{i}\left[ GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right) \right] \right\} +\varepsilon _{2}\left\{ \sum \limits _{i=1}^{N}\left[ GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right) \right] \right\} }{ \left( 1-2\varepsilon _{2}\right) \frac{\sum \limits _{i=1}^{N}x_{i}}{N} +\varepsilon _{2}}, \end{aligned}$$
(A.13)

where \(x_{i}\) is assigned a value of 0 or 1. However, the resulting problem is a nonlinear integer programming problem. It is complex and hard to solve.

In order to overcome this difficulty, we show how the objective function of Eq. (A.13) can be rewritten as a linear two-stage optimization problem. A constrained linear integer programming problem can be described as follows:

$$\begin{aligned}&\underset{x_{1},x_{2},\ldots ,x_{N}}{\max }\mathcal {L}=\left( 1-2\varepsilon _{2}\right) \left\{ \sum \limits _{i=1}^{N}x_{i}\left[ GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right) \right] \right\} \nonumber \\&\qquad +\varepsilon _{2}\left\{ \sum \limits _{i=1}^{N}\left[ GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right) \right] \right\} \nonumber \\&\quad \text { s.t. }\left. \left( 1-2\varepsilon _{2}\right) \frac{ \sum \nolimits _{i=1}^{N}x_{i}}{N}+\varepsilon _{2}=\lambda \right. , \end{aligned}$$
(A.14)

where \(\lambda \in \left[ \varepsilon _{2},1-\varepsilon _{2}\right]\). In the first stage, we maximize \(\mathcal {L}\) by setting \(\lambda\). Since the values of \(\sum \limits _{i=1}^{N}x_{i}\)range from 0 to N, the candidate of \(\lambda\) can be represented as \(\frac{j+\left( N-2j\right) \varepsilon _{2}}{N}\) for \(j=0\), 1, ..., N. By repeating the procedure \(N+1\) times at this stage, a sample of \(N+1\) optimal objective values is generated. In the second stage, based on the optimal objective values \({\mathcal{L}}_{\lambda }\) determined in the previous stage for each \(\lambda\), we maximize \(\frac{{{\mathcal{L}}_{\lambda } }}{\lambda }\) over \(\lambda\). In general, when considering all possible \(\lambda\), this two-stage procedure is equivalent to solving the nonlinear problem in Eq. (A.13).

Note that, alternatively, there is a trick that makes the problem much easier to handle in the first stage. By sorting \(GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right)\) in descending order, the summation of the first j sorted values denotes the optimal value of \(\max _{x_{1},x_{2},\ldots ,x_{N}} \sum \nolimits _{i=1}^{N}x_{i} \left[ GC_{H}^{2}\left( p_{i}\right) -GC_{\widetilde{H}}^{2}\left( p_{i}\right) \right]\) subject to \(\sum \nolimits _{i=1}^{N}x_{i}=j\), where \(j=0\) , 1, ..., N. In this case we could directly identify the optimal objective values \({\mathcal{L}}_{\lambda }\) through the sorted values for each \(\lambda\). Note that the second stage is the same as before. Thus we just need to determine which j is the best for optimization. This technique could require less computation time when N is large.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TY., Hsu, YH.E., Huang, R.J. et al. Making socioeconomic health inequality comparisons when health concentration curves intersect. Soc Choice Welf 57, 875–899 (2021). https://doi.org/10.1007/s00355-021-01323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-021-01323-0

Navigation