Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The immune landscape of common CNS malignancies: implications for immunotherapy

Abstract

Immunotherapy has enabled remarkable therapeutic responses across cancers of various lineages, albeit with some notable exceptions such as glioblastoma. Several previous misconceptions, which have impaired progress in the past, including the presence and role of the blood–brain barrier and a lack of lymphatic drainage, have been refuted. Nonetheless, a subset of patients with brain metastases but, paradoxically, not the vast majority of those with gliomas are able to respond to immune-checkpoint inhibitors. Immune profiling of samples obtained from patients with central nervous system malignancies using techniques such as mass cytometry and single-cell sequencing along with experimental data from genetically engineered mouse models have revealed fundamental differences in immune composition and immunobiology that not only explain the differences in responsiveness to these agents but also lay the foundations for immunotherapeutic strategies that are applicable to gliomas. Herein, we review the emerging data on the differences in immune cell composition, function and interactions within central nervous system tumours and provide guidance on the development of novel immunotherapies for these historically difficult-to-treat cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of immune cell populations in various anatomical locations within glioblastomas.
Fig. 2: Analysis of chemokine expression in various anatomical locations within glioblastomas.
Fig. 3: Frequencies of the major immune cell populations and potential immunotherapeutic targets in gliomas and brain metastases.
Fig. 4: Competing transcription factors regulate the activation of innate immune cells.

Similar content being viewed by others

References

  1. Louis D. N., Ohgaki H., Wiestler O. D., Cavenee W. K. World Health Organization Classification of Tumours. Revised 4th ed. (International Agency for Research on Cancer; 2016).

  2. Louis, D. N. et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 30, 844–856 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  4. Brat, D. J. et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 139, 603–608 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Q. H. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 33, 152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doucette, T. et al. Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol. Res. 1, 112–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, S. et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J. Clin. Oncol. 33, 2735–2744 (2015).

    Article  CAS  Google Scholar 

  9. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology 21, v1–v100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Alexander, B. M. et al. Individualized screening trial of innovative glioblastoma therapy (INSIGhT): a bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nabors, L. B. et al. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro-oncology 17, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wick, W. et al. Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin. Cancer Res. 22, 4797–4806 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Elinzano, H. et al. PPX and concurrent radiation for newly diagnosed glioblastoma without MGMT methylation a randomized phase II study: BrUOG 244. Am. J. Clin. Oncol. Cancer 41, 159–162 (2018).

    Article  Google Scholar 

  16. Khasraw, M. et al. Cilengitide with metronomic temozolomide, procarbazine, and standard radiotherapy in patients with glioblastoma and unmethylated MGMT gene promoter in ExCentric, an open-label phase II trial. J. Neurooncol. 128, 163–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Raizer, J. J. et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J. Neuro. Oncol. 126, 185–192 (2016).

    Article  CAS  Google Scholar 

  18. Tawbi, H. A. et al. Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendriks, L. E. L. et al. Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors. J. Thorac. Oncol. 14, 1244–1254 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Reardon, D. A., Nayak, L., Peters, K. B., Clarke Jordan, J. T. & Groot, J. F. D. Phase II study pembrolizumab or pembrolizumab plus bevacizumab for recurrent glioblastoma (rGBM) patients. J. Clin. Oncol. 36 (Suppl. 15), 2006 (2018).

    Article  Google Scholar 

  21. BMS. Bristol-Myers Squibb Announces Phase 3 CheckMate-498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (nivolumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multiforme https://news.bms.com/news/corporate-financial/2019/Bristol-Myers-Squibb-Announces-Phase-3-CheckMate--498-Study-Did-Not-Meet-Primary-Endpoint-of-Overall-Survival-with-Opdivo-nivolumab-Plus-Radiation-in-Patients-with-Newly-Diagnosed-MGMT-Unmethylated-Glioblastoma-Multiforme/default.aspx (Bristol-Myers Squibb, 2019).

  22. BMS. Bristol-Myers Squibb Provides Update on Phase 3 Opdivo (nivolumab) CheckMate-548 Trial in Patients with Newly Diagnosed MGMT-Methylated Glioblastoma Multiforme https://news.bms.com/news/corporate-financial/2019/Bristol-Myers-Squibb-Provides-Update-on-Phase-3-Opdivo-nivolumab-CheckMate--548-Trial-in-Patients-with-Newly-Diagnosed-MGMT-Methylated-Glioblastoma-Multiforme/default.aspx (Bristol-Myers Squibb, 2019).

  23. Reardon, D. A. et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6, 1003–1010 (2020).

    Article  PubMed  Google Scholar 

  24. Khasraw, M., Reardon, D. A., Weller, M. & Sampson, J. H. PD-1 inhibitors: do they have a future in the treatment of glioblastoma? Clin. Cancer Res. 26, 5287–5296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sampson, J. H. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-oncology 13, 324–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Indraccolo, S. et al. Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin. Cancer Res. 25, 1828–1837 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Felsberg, J. et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int. J. Cancer 129, 659–670 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joshi, K. et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat. Med. 25, 1549–1559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weller, M. & Le Rhun, E. Immunotherapy for glioblastoma: quo vadis? Nat. Rev. Clin. Oncol. 16, 405–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Abdullah, A. et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J. Neuroinflamm. 15, 323 (2018).

    Article  CAS  Google Scholar 

  35. Nduom, E. K., Weller, M. & Heimberger, A. B. Immunosuppressive mechanisms in glioblastoma. Neuro-oncology 17, 9–14 (2015).

    Article  CAS  Google Scholar 

  36. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 29, 785–789 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, J. et al. Improved efficacy of Neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khasraw, M., Walsh, K. M., Heimberger, A. B. & Ashley, D. M. What is the burden of proof for tumor mutational burden in gliomas? Neuro-oncology 23, 17–22 (2020).

    Article  PubMed Central  Google Scholar 

  41. Gromeier, M. et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat. Commun. 12, 352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGrail, D. J. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 32, 661–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Eckert, A. et al. Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol. 17, 146–150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nduom, E. K. et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-oncology 18, 195–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Hodges, T. R. et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-oncology 19, 1047–1057 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garber, S. T. et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-oncology 18, 1357–1366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guan, J. et al. MLH1 deficiency-triggered DNA hyperexcision by exonuclease 1 activates the cGAS-STING pathway. Cancer Cell 39, 109–121.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Ferguson, S. D. et al. Profiles of brain metastases: prioritization of therapeutic targets. Int. J. Cancer 143, 3019–3026 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stein, M. K. et al. Tumor mutational burden is site specific in non-small-cell lung cancer and is highest in lung adenocarcinoma brain metastases. JCO Precis. Oncol. 3, 1–13 (2019).

    PubMed  Google Scholar 

  51. Goldberg, S. B. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17, 976–983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Domenyuk, V. et al. Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes. Nat. Commun. 9, 1219 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Gabrusiewicz, K. et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 1, e85841 (2016).

    Article  PubMed Central  Google Scholar 

  61. Muller, S. et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18, 234 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Gupta, P. et al. Transcriptionally defined immune contexture in human gliomas at single-cell resolution. Neuro-oncology 22, 112–112 (2020).

    Article  Google Scholar 

  64. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kassab, C. et al. TMIC-60 comprehensive spatial characterization of immune cells in the CNS brain tumor microenvironment. Neuro-oncology 21, vi261 (2019).

    Article  PubMed Central  Google Scholar 

  66. Ott, M. et al. Radiation with STAT3 blockade triggers dendritic cell-T cell Interactions in the glioma microenvironment and therapeutic efficacy. Clin. Cancer Res. 26, 4983–4994 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Ott, M. et al. Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight 5, e134386 (2020).

    Article  PubMed Central  Google Scholar 

  68. Leone, R. D., Lo, Y. C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goswami, S. et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat. Med. 26, 39–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, J. et al. Immune checkpoint inhibitor-induced reinvigoration of tumor-infiltrating CD8+ T cells is determined by their differentiation status in glioblastoma. Clin. Cancer Res. 25, 2549–2559 (2019).

    CAS  PubMed  Google Scholar 

  72. Shaim, H. et al. Inhibition of the αv integrin-TGF-β axis improves natural killer cell function against glioblastoma stem cells. bioRxiv https://doi.org/10.1101/2020.03.30.016667 (2020).

  73. Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Montano, N. et al. Expression of EGFRvIII in Glioblastoma: prognostic significance revisited. Neoplasia 13, 1113–U1130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brown, C. E. et al. Regression of Glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Caruso, H. G. et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 75, 3505–3518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, eaaw7843 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Antonios, J. P. et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-oncology 19, 796–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an ivy foundation early phase clinical trials consortium phase II study. Neuro-oncology 18, 557–564 (2016).

    Article  PubMed  Google Scholar 

  84. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. von Roemeling, C. A. et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat. Commun. 11, 1508 (2020).

    Article  CAS  Google Scholar 

  86. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gholamin, S. et al. Disrupting the CD47-SIRPalpha anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9, eaaf2968 (2017).

    Article  PubMed  CAS  Google Scholar 

  88. Hutter, G. et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc. Natl Acad. Sci. USA 116, 997–1006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gholamin, S. et al. Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immun. 26, 130–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohkuri, T. et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2, 1199–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, T. & Chen, Z. J. J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jing, W. et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J. Immunother. Cancer 7, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Duan, Q. Q., Zhang, H. L., Zheng, J. N. & Zhang, L. J. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 6, 605–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Heimberger, A. B. et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 9, 4247–4254 (2003).

    CAS  PubMed  Google Scholar 

  96. Chongsathidkiet, P. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24, 1459–1468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nwajei, F. et al. Brain tumor-induced neuronal stress orchestrates adaptive immune surveillance through fractalkine. J. Immunol. 200, 178 (2018).

    Google Scholar 

  99. Feng, X. et al. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6, 15077–15094 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Deng, L. F. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sabins, N. C., Harman, B. C., Barone, L. R., Shen, S. & Santulli-Marotto, S. Differential expression of immune checkpoint modulators on in vitro primed CD4+ and CD8+ T cells. Front. Immunol. 7, 221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tran Janco, J. M., Lamichhane, P., Karyampudi, L. & Knutson, K. L. Tumor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol. 194, 2985–2991 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Fujiwara, Y. et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol. Rep. 26, 1533–1537 (2011).

    CAS  PubMed  Google Scholar 

  104. Hussain, S. F. et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 67, 9630–9636 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, L. et al. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57, 1458–1467 (2009).

    Article  PubMed  Google Scholar 

  106. Melillo, J. A. et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J. Immunol. 184, 2638–2645 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  108. Wei, J. et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol. Cancer Ther. 9, 67–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wei, J. et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 73, 3913–3926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology 12, 1113–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shigematsu, A. et al. Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J. Radiat. Res. 48, 51–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Doucette, T. A. et al. Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro-oncology 14, 1136–1145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Iwamaru, A. et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26, 2435–2444 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Rahaman, S. O. et al. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21, 8404–8413 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Heiland, D. H. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 10, 2541 (2019).

    Article  CAS  Google Scholar 

  117. Priego, N. et al. Author correction: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1481 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. de Groot, J. et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-oncology 22, 539–549 (2020).

    Article  PubMed  CAS  Google Scholar 

  120. Schuessler, A. et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 74, 3466–3476 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weathers, S. P. et al. Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: results from a phase I/II trial. Clin. Cancer Res. 26, 3565–3577 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rao, G. et al. Anti-PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin. Cancer Res. 26, 4699–4712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, H. M. et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J. Clin. Invest. 128, 5647–5662 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Suciu-Foca, N. et al. Soluble Ig-like transcript 3 inhibits tumor allograft rejection in humanized SCID mice and T cell responses in cancer patients. J. Immunol. 178, 7432–7441 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Bloch, O. et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res. 19, 3165–3175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gabrusiewicz, K. et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7, e1412909 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sato-Hashimoto, M. et al. Microglial SIRPα regulates the emergence of CD11c+ microglia and demyelination damage in white matter. eLife 8, e42025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Guldner, I. H. et al. CNS-native Myeloid cells drive immune suppression in the brain metastatic Niche through Cxcl10. Cell 183, 1234–1248.e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kharitonenkov, A. et al. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386, 181–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, X. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yi, T. et al. Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses. Immunity 43, 764–775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  PubMed  Google Scholar 

  138. Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11, 4835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chang, C. C. et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Moretta, A. et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J. Exp. Med. 178, 597–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Romagne, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perez-Villar, J. J. et al. The CD94/NKG2-A inhibitory receptor complex is involved in natural killer cell-mediated recognition of cells expressing HLA-G1. J. Immunol. 158, 5736–5743 (1997).

    CAS  PubMed  Google Scholar 

  143. Sivori, S. et al. CD94 functions as a natural killer cell inhibitory receptor for different HLA class I alleles: identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies. Eur. J. Immunol. 26, 2487–2492 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Blake, S. J., Dougall, W. C., Miles, J. J., Teng, M. W. & Smyth, M. J. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin. Cancer Res. 22, 5183–5188 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Sarhan, D. et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res. 76, 5696–5706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 106, 17858–17863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Bernhardt, G. TACTILE becomes tangible: CD96 discloses its inhibitory peculiarities. Nat. Immunol. 15, 406–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. da Silva, I. P. et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Gleason, M. K. et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119, 3064–3072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ndhlovu, L. C. et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119, 3734–3743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Beldi-Ferchiou, A. et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pesce, S. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J. Allergy Clin. Immunol. 139, 335–346.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003–1016 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Liu, F. et al. CD96, a new immune checkpoint, correlates with immune profile and clinical outcome of glioma. Sci. Rep. 10, 10768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health RO1CA120813, R01NS120547 and P30 CA016672, the Ben and Catherine Ivy Foundation, the MD Anderson GBM Moonshot, the Traver Walsh Foundation, and the Brockman Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Amy B. Heimberger.

Ethics declarations

Competing Interests

A.B.H. has acted as a consultant of Caris Life Science and WCG Oncology, has received research funding from Celularity, Carthera and Codiak Bioscience, is the co-owner of patents or other intellectual property, receives or might receive royalties from Celldex Therapeutics, DNAtrix and Moleculin, and holds stock and other ownership interests in Caris Life Science. M.O. and R.M.P. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks W. Wick and the other, anonymous peer reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Ivy Glioblastoma Atlas Project: https://glioblastoma.alleninstitute.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ott, M., Prins, R.M. & Heimberger, A.B. The immune landscape of common CNS malignancies: implications for immunotherapy. Nat Rev Clin Oncol 18, 729–744 (2021). https://doi.org/10.1038/s41571-021-00518-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00518-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer