Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Raman spectral cytopathology for cancer diagnostic applications

Abstract

Raman spectroscopy can provide a rapid, label-free, nondestructive measurement of the chemical fingerprint of a sample and has shown potential for cancer screening and diagnosis. Here we report a protocol for Raman microspectroscopic analysis of different exfoliative cytology samples (cervical, oral and lung), covering sample preparation, spectral acquisition, preprocessing and data analysis. The protocol takes 2 h 20 min for sample preparation, measurement and data preprocessing and up to 8 h for a complete analysis. A key feature of the protocol is that it uses the same sample preparation procedure as commonly used in diagnostic cytology laboratories (i.e., liquid-based cytology on glass slides), ensuring compatibility with clinical workflows. Our protocol also covers methods to correct for the spectral contribution of glass and sample pretreatment methods to remove contaminants (such as blood and mucus) that can obscure spectral features in the exfoliated cells and lead to variability. The protocol establishes a standardized clinical routine allowing the collection of highly reproducible data for Raman spectral cytopathology for cancer diagnostic applications for cervical and lung cancer and for monitoring suspicious lesions for oral cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the procedure.
Fig. 2: Bright-field images of stained and unstained cervical and lung exfoliated cells.
Fig. 3: Raman spectra from cervical exfoliated cells before and after pretreatment and preprocessing.
Fig. 4: Typical results from cervical exfoliated cells.
Fig. 5: Raman spectra from oral exfoliated cells before and after preprocessing.
Fig. 6: Typical results from oral exfoliated cells.
Fig. 7: Raman spectra from lung exfoliated cells before and after pretreatment and preprocessing.
Fig. 8: Typical results from lung exfoliated cells.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. O’Dowd, G., Bell, S. & Wright, S. Wheater’s Pathology: A Text, Atlas and Review of Histopathology 6th edn (Elsevier, 2020).

  2. Koss, L. G. & Melamed, M. R. Koss’ Diagnostic Cytology and Its Histologic Bases (Lippincott Williams & Wilkins, 2005).

  3. Raju, K. Evolution of Pap stain. Biomed. Res. Ther. 3, 490––500 (2016).

    Article  Google Scholar 

  4. Koliopoulos, G. et al. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst. Rev. 8, CD008587 (2017).

    PubMed  Google Scholar 

  5. Diem, M. Introduction to Modern Vibrational Spectroscopy (Wiley, 1993).

  6. Byrne, H. J., Sockalingum, G. D. & Stone, N. Raman microscopy: complement or competitor? in Biomedical Applications of Synchrotron Infrared Microspectroscopy: A Practical Approach (ed. Moss, D.) 105–143 (Royal Society of Chemistry, 2011).

  7. Moss, D., ed. Biomedical Applications of Synchrotron Infrared Microspectroscopy (Royal Society of Chemistry, 2011).

  8. Byrne, H. J. et al. Spectropathology for the next generation: quo vadis? Analyst 140, 2066–2073 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Baker, M. J. et al. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst 143, 1735–1757 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Wong, P. T. T., Wong, R. K., Caputo, T. A., Godwin, T. A. & Rigas, B. Infrared-spectroscopy of exfoliated human cervical cells—evidence of extensive structural-changes during carcinogenesis. Proc. Natl Acad. Sci. USA 88, 10988–10992 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yazdi, H. M., Bertrand, M. A. & Wong, P. T. Detecting structural changes at the molecular level with Fourier transform infrared spectroscopy. A potential tool for prescreening preinvasive lesions of the cervix. Acta Cytol 40, 664–668 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Romeo, M. J., Quinn, M. A., Burden, F. R. & McNaughton, D. Influence of benign cellular changes in diagnosis of cervical cancer using IR microspectroscopy. Biopolymers 67, 362–366 (2002).

    Article  PubMed  Google Scholar 

  13. Walsh, M. J. et al. ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology. Biochem. Biophys. Res. Commun. 352, 213–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Schubert, J. M. et al. Spectral cytopathology of cervical samples: detecting cellular abnormalities in cytologically normal cells. Lab. Invest. 90, 1068–1077 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kelly, J. G. et al. A spectral phenotype of oncogenic human papillomavirus-infected exfoliative cervical cytology distinguishes women based on age. Clin. Chim. Acta 11, 1027–1033 (2010).

    Article  Google Scholar 

  16. Gajjar, K. et al. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS ONE 9, e82416 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fung, M. F. K. et al. Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening. Gynecol. Oncol. 66, 10–15 (1997).

    Article  Google Scholar 

  18. Neviliappan, S., Fang Kan, L., Tiang Lee Walter, T., Arulkumaran, S. & Wong, P. T. T. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo). Gynecol. Oncol. 85, 170–174 (2002).

    Article  PubMed  Google Scholar 

  19. Cohenford, M. A. et al. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis. Gynecol. Oncol. 66, 59–65 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Cohenford, M. A. & Rigas, B. Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology. Proc. Natl Acad. Sci. USA 95, 15327–15332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiriboga, L. et al. Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells. Biospectroscopy 4, 55–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Wood, B. R. et al. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 4, 75–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Wong, P. T. T. et al. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells. Biopolymers 67, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Diem, M., Chiriboga, L., Lasch, P. & Pacifico, A. IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 67, 349–353 (2002).

    Article  PubMed  Google Scholar 

  25. Papamarkakis, K. et al. Cytopathology by optical methods: spectral cytopathology of the oral mucosa. Lab. Investig 90, 589–598 (2010).

    Article  PubMed  Google Scholar 

  26. Miljković, M., Bird, B., Lenau, K., Mazur, A. I. & Diem, M. Spectral cytopathology: new aspects of data collection, manipulation and confounding effects. Analyst 138, 3975–3982 (2013).

    Article  PubMed  Google Scholar 

  27. Diem, M. et al. Cancer screening via infrared spectral cytopathology (SCP): results for the upper respiratory and digestive tracts. Analyst 141, 416–428 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Lewis, P. D. et al. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 10, 640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Townsend, D. et al. Infrared micro-spectroscopy for cyto-pathological classification of esophageal cells. Analyst 140, 2215–2223 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Old, O. et al. Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy. J. Gastroenterol. 53, 227–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Pawley, J. B., ed. Handbook of Biological Confocal Microscopy revised edn. (Plenum Press, 1990).

  32. Rubina, S., Amita, M., Kedar, K. D., Bharat, R. & Krishna, C. M. Raman spectroscopic study on classification of cervical cell specimens. Vib. Spectrosc. 68, 115–121 (2013).

    Article  CAS  Google Scholar 

  33. Vargis, E., Tang, Y.-W., Khabele, D. & Mahadevan-Jansen, A. Near-infrared Raman microspectroscopy detects high-risk human papillomaviruses. Transl. Oncol. 5, 172–179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sahu, A. et al. Raman exfoliative cytology for oral precancer diagnosis. J. Biomed. Opt. 22, 1–12 (2017).

    Article  PubMed  Google Scholar 

  35. Sahu, A. et al. Raman exfoliative cytology for prognosis prediction in oral cancers: a proof of concept study. J. Biophotonics 12, e201800334 (2019).

    Article  PubMed  Google Scholar 

  36. Byrne, H. J. et al. Biomedical applications of vibrational spectroscopy: oral cancer diagnostics. Spectrochim. Acta A Mol. Biomol. Spectrosc 252, 119470 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Yosef, H. K. et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging. Anal. Chem. 89, 6893–6899 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Wehbe, K., Filik, J., Frogley, M. D. & Cinque, G. The effect of optical substrates on micro-FTIR analysis of single mammalian cells. Anal. Bioanal. Chem. 405, 1311–1324 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bonnier, F. et al. Processing ThinPrep cervical cytological samples for Raman spectroscopic analysis. Anal. Methods 6, 7831–7841 (2014).

    Article  CAS  Google Scholar 

  40. Behl, I. et al. Development of methodology for Raman microspectroscopic analysis of oral exfoliated cells. Anal. Methods 9, 937–948 (2017).

    Article  CAS  Google Scholar 

  41. Duraipandian, S. et al. Raman spectroscopic detection of high-grade cervical cytology: using morphologically normal appearing cells. Sci. Rep. 8, 15048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Traynor, D., Duraipandian, S., Martin, C. M., O’Leary, J. J. & Lyng, F. M. Improved removal of blood contamination from ThinPrep cervical cytology samples for Raman spectroscopic analysis. J. Biomed. Opt. 23, 1–8 (2018).

    Article  PubMed  Google Scholar 

  43. O’Dea, D. Raman Microspectroscopy for the Discrimination of Thyroid and Lung Cancer Subtypes for Application in Clinical Cytopathology. PhD thesis, Technological University Dublin (2020).

  44. Ramos, I. et al. Raman spectroscopy for cytopathology of exfoliated cervical cells. Faraday Discuss 187, 187–198 (2015).

    Article  Google Scholar 

  45. Kearney, P. et al. Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples. J. Biomed. Opt. 22, 1–10 (2017).

    Article  PubMed  Google Scholar 

  46. Traynor, D. et al. A study of hormonal effects in cervical smear samples using Raman spectroscopy. J. Biophotonics 11, e201700240 (2018).

    Article  PubMed  Google Scholar 

  47. Traynor, D. et al. The potential of biobanked liquid based cytology samples for cervical cancer screening using Raman spectroscopy. J. Biophotonics 12, e201800377 (2019).

    Article  PubMed  Google Scholar 

  48. Behl, I. et al. A pilot study for early detection of oral premalignant diseases using oral cytology and Raman micro‐spectroscopy: assessment of confounding factors. J. Biophotonics 13, e202000079 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Behl, I. et al. Raman microspectroscopic study for the detection of oral field cancerisation using brush biopsy samples. J. Biophotonics 13, e202000131 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Morais, C. L. M., Lima, K. M. G., Singh, M. & Martin, F. L. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 15, 2143–2162 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Ibrahim, O. et al. Improved protocols for pre-processing Raman spectra of formalin fixed paraffin preserved tissue sections. Anal. Methods 9, 4709–4717 (2017).

    Article  CAS  Google Scholar 

  53. Kamemoto, L. E. et al. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl. Spectrosc. 64, 255–261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hologic. ThinPrep® 2000 Processor: Operator’s Manual, MAN-02585-001. https://www.hologic.com/sites/default/files/2018-05/MAN-02585-001_007_02.pdf (2017).

  55. Kerr, L. T. & Hennelly, B. M. A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides. Chemometr. Intell. Lab. Syst. 158, 61–68 (2016).

    Article  CAS  Google Scholar 

  56. Behl, I. Raman Microspectroscopy for Detection of Oral Potentially Malignant Disorders Using Minimally Invasive Brush Biopsy Samples. PhD thesis, Technological University Dublin (2019).

  57. Urvoy, M. & Autrusseau, F. Application of Grubbs’ test for outliers to the detection of watermarks. in IH&MMSec ’14: Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security 49–60 (ACM Press, 2014).

  58. Hardin, J. & Rocke, D. M. The distribution of robust distances. J. Comput. Graph. Stat. 14, 928–946 (2005).

    Article  Google Scholar 

  59. Hubert, M., Reynkens, T., Schmitt, E. & Verdonck, T. Sparse PCA for high-dimensional data with outliers. Technometrics 58, 424–434 (2016).

    Article  Google Scholar 

  60. Afseth, N. K. & Kohler, A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemometr. Intell. Lab. Syst. 117, 92–99 (2012).

    Article  CAS  Google Scholar 

  61. Brereton, R. G. & Lloyd, G. R. Partial least squares discriminant analysis: taking the magic away. J. Chemom. 28, 213–225 (2014).

    Article  CAS  Google Scholar 

  62. Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum 2, 8 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Enterprise Ireland co-funded by the European Regional Development Fund (ERDF) and Ireland’s EU Structural Funds Programme 2007–2013, Health Research Board Collaborative Applied Research Grant CARG2012/29 to CERVIVA (www.cerviva.ie) and Science Foundation Ireland (12/IP/1494). I.B. and D.O’D. were supported by Dublin Institute of Technology Fiosraigh Postgraduate Scholarships.

Author information

Authors and Affiliations

Authors

Contributions

F.M.L. conceived the idea for the manuscript and co-wrote, compiled and finalized the manuscript. D.T., I.B. and D.O’D. co-wrote the manuscript and compiled the figures. H.J.B., F.B., A.M., F.O’C., S.N., A.M., S.F., S.G., C.M.H., C.M.M. and J.J.O’L. revised and edited the manuscript.

Corresponding author

Correspondence to Fiona M. Lyng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key papers using this protocol

Bonnier, F. et al. Anal. Methods 6, 7831–7841 (2014): https://doi.org/10.1039/C4AY01497A

Behl, I. et al. Anal. Methods 9, 937–948 (2017): https://doi.org/10.1039/C6AY03360A

Duraipandian, S. et al. Sci. Rep. 8, 15048 (2018): https://doi.org/10.1038/s41598-018-33417-8

Supplementary information

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traynor, D., Behl, I., O’Dea, D. et al. Raman spectral cytopathology for cancer diagnostic applications. Nat Protoc 16, 3716–3735 (2021). https://doi.org/10.1038/s41596-021-00559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00559-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer