Skip to main content
Log in

Improved Approach in the Coupling Function Between Primary and Ground Level Cosmic Ray Particles Based on Neutron Monitor Data

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this work an improved approach of existing approximations on the coupling function between primary and ground-level cosmic-ray particles is presented. The proposed coupling function is analytically derived based on a formalism used in Quantum Field Theory calculations. It is upgraded compared to previous versions with the inclusion of a wider energy spectrum that is extended to lower energies, as well as an altitude correction factor, also derived analytically. The improved approximations are applied to two cases of Forbush decreases detected in March 2012 and September 2017. In the analytical procedure for the derivation of the primary cosmic-ray spectrum during these events, we also consider the energy spectrum exponent \(\gamma \) to be varied with time. For the validation of the findings, we present a direct comparison between the primary spectrum and the amplitude values derived by the proposed method and the obtained time series of the cosmic-ray intensity at the rigidity of 10 GV obtained from the Global Survey Method. The two sets of results are found to be in very good agreement for both events as denoted by the Pearson correlation factors and slope values of their scatter plots. In such way we determine the validity and applicability of our method to Forbush decreases as well as to other cosmic-ray phenomena, thus introducing a new, alternative way of inferring the primary cosmic-ray intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al.: 2003, Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250. DOI.

    Article  ADS  Google Scholar 

  • Belov, A.: 2008, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Proc. of the IAU 4, 439. DOI.

    Chapter  Google Scholar 

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: 2014, Coronal mass ejections and non-recurrent Forbush decreases. Solar Phys. 289, 3949. DOI.

    Article  ADS  Google Scholar 

  • Belov, A., Eroschenko, E., Yanke, V., Oleneva, V., Abunin, A., Abunina, M., Papaioannou, A., Mavromichalaki, H.: 2018, The global survey method applied to ground-level cosmic ray measurements. Solar Phys. 293, 68. DOI.

    Article  ADS  Google Scholar 

  • Bilal, A.: 2011, Advanced quantum field theory: renormalization, non-abelian gauge theories and anomalies. In: Lect. Notes Brus.

    Google Scholar 

  • Brown, R.: 1957, Neutron yield functions of the nucleonic component of cosmic radiation. Nuovo Cimento 6, 2816.

    Google Scholar 

  • Caballero-Lopez, R., Moraal, H.: 2012, Cosmic-ray yield and response functions in the atmosphere. J. Geophys. Res. 117, 12103. DOI.

    Article  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI.

    Article  ADS  Google Scholar 

  • Clem, J.M., Dorman, L.I.: 2000, Neutron monitor response functions. Space Sci. Rev. 93, 335. DOI.

    Article  ADS  Google Scholar 

  • Desorgher, L., Flückiger, E.O., Gurtner, M., Moser, M.R., Bütikofer, R.: 2005, Atmocosmics: a Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802. DOI.

    Article  ADS  Google Scholar 

  • Dorman, L.I.: 1957, Cosmic Ray Variations, State Publishing House for Technical and Theoretical Literature, Moscow, 102.

    Google Scholar 

  • Dorman, L.I.: 1974, Cosmic Rays Variations and Space Explorations, North-Holland, Amsterdam.

    Google Scholar 

  • Dorman, L.I., Villoresi, G., Iucci, N., et al.: 2000, Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997): 3. Geomagnetic effects and coupling functions. J. Geophys. Res. 105(A9), 21047. DOI.

    Article  ADS  Google Scholar 

  • Flückiger, E.O., Moser, M.R., Pirard, B., Bütikofer, R., Desorgher, L.: 2008, A parameterized neutron monitor yield function for space weather applications. In: Proc. 30 th ICRC 2007, 1289.

    Google Scholar 

  • Fonger, W.: 1953, Cosmic radiation intensity-time variations and their origin. II. Energy dependence of 27-day variation. Phys. Rev. 91, 351.

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108. DOI.

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1954, Worldwide cosmic ray variations, 1937–1952. J. Geophys. Res. 59, 525. DOI.

    Article  ADS  Google Scholar 

  • Griffiths, D.: 2008, Introduction to Elementary Particles, Wiley-VCH, Weinheim, 9783527406012.

    MATH  Google Scholar 

  • Kumar, A., Badruddin: 2014, Cosmic-ray modulation due to high-speed solar-wind streams of different sources, speed, and duration. Solar Phys. 289, 4267. DOI.

    Article  ADS  Google Scholar 

  • Kurt, V., Kudela, K., Mavromichalaki, H., Kashapova, L., Yushkov, B., Sgouropoulos, C.: 2019, Onset time of the GLE 72 observed at neutron monitors and its relation to electromagnetic emissions. Solar Phys. 294, 18. DOI.

    Article  ADS  Google Scholar 

  • Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: 2016, Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of Cycle 24. Solar Phys. 291, 1025. DOI.

    Article  ADS  Google Scholar 

  • Livada, M., Mavromichalaki, H.: 2020, Spectral analysis of Forbush decreases using a new yield function. Solar Phys. 295, 115. DOI.

    Article  ADS  Google Scholar 

  • Livada, M., Mavromichalaki, H., Plainaki, C.: 2018, Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012. Astrophys. Space Sci. 363, 8. DOI.

    Article  ADS  Google Scholar 

  • Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658. DOI.

    Article  ADS  Google Scholar 

  • Maurin, D., Cheminet, A., Derome, L., Ghelfi, A., Hubert, G.: 2015, Neutron monitors and muon detectors for solar modulation studies: interstellar flux, yield function, and assessment of critical parameters in count rate calculations. Adv. Space Res. 55(1), 363. DOI.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H.: 2012, The physics of cosmic rays applied to space weather. In: Maris, G., Demetrescu, C. (eds.) Advances in Solar and Solar-Terrestrial Physics, 135, ISBN 978-81-308-0483-5.

    Google Scholar 

  • Mavromichalaki, H., Souvatzoglou, G., Sarlanis, C., Mariatos, G., Papaioannou, A., Belov, A., Eroshenko, E., Yanke, V., for the NMDB team: 2010, Implementation of the ground level enhancement alert software at NMDB database. New Astron. 15, 744. DOI.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flückiger, E.O., Bütikofer, R., et al.: 2011, Applications and usage of the real – time neutron monitor database. Adv. Space Res. 47, 2210. DOI.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Gerontidou, M., Paschalis, P., Paouris, E., Tezari, A., Sgouropoulos, C., Crosby, N., Dierckxsens, M.: 2018, Real-time detection of the ground level enhancement on 10 September 2017 by A.Ne.Mo.S.: system report. Space Weather 16, 1797. DOI.

    Article  ADS  Google Scholar 

  • Mishev, A.L., Koldobskiy, S.A., Kovaltsov, G.A., Gil, A., Usoskin, I.G.: 2020, Updated neutron-monitor yield function: bridging between in situ and ground-based cosmic ray measurements. J. Geophys. Res. 125, e2019JA02743. DOI.

    Article  Google Scholar 

  • National Advisory Committee for Aeronautics (NACA): Technical Note 3182, Manual of the ICAO Standard Atmosphere, Calculations by the NACA, International Civil Aviation Organization Montreal, Canada and Langley Aeronautical Laboratory Langley Field, VA, USA.

  • Papaioannou, A., Belov, A., Abunina, M., Eroshenko, E., Abunin, A., Anastasiadis, A., Patsourakos, S., Mavromichalaki, H.: 2020, Interplanetary coronal mass ejections as the driver of non-recurrent Forbush decreases. Astrophys. J. 890, 101. DOI.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Georgoulis, M.K., et al.: 2016, The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis. Astrophys. J. 817, 1. DOI.

    Article  Google Scholar 

  • Peskin, M.E., Schroeder, D.V.: 1995, An Introduction to Quantum Field Theory, Perseus Books, Cambridge.

    Google Scholar 

  • Seinfeld, J.H., Pandis, S.: 2006, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, ISBN 1118947401.

    Google Scholar 

  • Simpson, J.A.: 1948, The latitude dependence of neutron densities in the atmosphere as a function of altitude. Phys. Rev. 73, 11. DOI.

    Article  Google Scholar 

  • Simpson, J.A.: 2000, The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. Space Sci. Rev. 93, 11. DOI.

    Article  ADS  Google Scholar 

  • Srednicki, M.: 2007, Quantum Field Theory, Cambridge University Press, Cambridge. DOI.

    Book  MATH  Google Scholar 

  • Usoskin, I.G., Kovaltsov, G.A., Adriani, O., Barbarino, G.C., Basilevskaya, G.A., et al.: 2015, Force-field parameterization of the galactic cosmic ray spectrum: validation for Forbush decreases. Adv. Space Res. 55, 2940. DOI.

    Article  ADS  Google Scholar 

  • Venkatesan, D., Badruddin: 1990, Cosmic-ray intensity variations in the 3-dimensional heliosphere. Space Sci. Rev. 52, 121. DOI.

    Article  ADS  Google Scholar 

  • Villoresi, G., Dorman, L.I., Iucci, N., Ptitsyna, N.G.: 2000, Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997): 1. Methodology and data quality assurance. J. Geophys. Res. 105, 21. DOI.

    Article  Google Scholar 

  • Weinberg, S.: 1995, The Quantum Theory of Fields, vol. I, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Xaplanteris, L., Livada, M., Mavromichalaki, H., Dorman, L.I.: 2020, A new approximate coupling function: the case of Forbush decreases. New Astron. 82, 101453. DOI.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to our collaborators of the Neutron Monitor stations for kindly providing the cosmic-ray data used in this work in the frame of the high-resolution real-time Neutron Monitor Database (NMDB), funded under the European Union’s FP7 Program (contract no. 213007). Athens Neutron Monitor Station (A.Ne.Mo.S.) is supported by the Special research account of the National and Kapodistrian University of Athens. We are also particularly thankful to the anonymous referee whose insightful comments have helped us improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Xaplanteris.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xaplanteris, L., Livada, M., Mavromichalaki, H. et al. Improved Approach in the Coupling Function Between Primary and Ground Level Cosmic Ray Particles Based on Neutron Monitor Data. Sol Phys 296, 91 (2021). https://doi.org/10.1007/s11207-021-01836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01836-y

Keywords

Navigation