Skip to main content
Log in

Astrocyte-Mediated Regulation of Cell Development in the Model of Neurogenic Niche in Vitro Treated with Aβ1-42

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Neurogenesis is a complex process which governs embryonic brain development and is important for brain plasticity throughout the whole life. Postnatal neurogenesis occurs in neurogenic niches that regulate the processes of proliferation and differentiation of stem and progenitor cells driven by stimuli triggering mechanisms of neuroplasticity. In the neurogenic niches cells of glial and endothelial origin are the key regulators of neurogenesis. It is known that physiological neurogeneses is crucial for memory formation, whereas reparative neurogenesis provides partial repair of injured brain structures and compensation of neurological deficits caused by the brain injury. Dysregulation of neurogenesis is a characteristics feature of various neurodevelopmental and neurodegenerative diseases, particularly, Alzheimer’s disease representing a very important medical and social problem. In the in vitro model of the neurogenic niche using hippocampal neurospheres as a source of stem/progenitor cells and astrocytes, we have studied effects of astrocyte activation on the expression of markers of different stages of cell proliferation and differentiation. We found that aberrant mechanisms of development of stem and progenitor cells, caused by the beta-amyloid peptide (Аβ1–42), can be partially restored by targeted activation of GFAP-expressing cells in the neurogenic niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lane, C.A., Hardy, J., and Schott, J.M., Eur. J. Neurol., 2018, vol. 25, no. 1, pp. 59−70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez, J.J. and Verkhratsky, A., J. Anat., 2011, vol. 219, no. 1, pp. 78−89.

    Article  Google Scholar 

  3. Hollands, C., Bartolotti, N., and Lazarov, O., Front. Neurosci., 2016, vol. 10, 178. https://doi.org/10.3389/fnins.2016.00178

    Article  PubMed  PubMed Central  Google Scholar 

  4. Komleva, Y.K., Kuvacheva, N.V., Malinovskaya, N.A., Gorina, Ya.V., Lopatina, O.L., Teplyashina, E.A., Pozhilenkova, E.A., Zamay, A.S., Morgun, A.V., and Salmina, A.B., Hum. Physiol., 2016, vol. 42, no. 8, pp. 865−873.

    Article  Google Scholar 

  5. Lin, R., Cai, J., Nathan, C., Wei, X., Schleidt, S., Rosenwasser, R., and Iacovitti, L., Neurobiol. Dis., 2015, vol. 74, pp. 229−239. https://doi.org/10.1016/j.nbd.2014.11.016

    Article  PubMed  Google Scholar 

  6. Kerr, A.L., Steuer, E.L., Pochtarev, V., and Swain, R.A., Neuroscience, 2010, vol. 171, no. 1, pp. 214−226.

    Article  CAS  Google Scholar 

  7. Pozhilenkova, E.A., Lopatina, O.L., Komleva, Y.K., Salmin, V.V., and Salmina, A.B., Rev. Neurosci., 2017, vol. 28, no. 4, pp. 397−415. https://doi.org/10.1515/revneuro-2016-0071

    Article  PubMed  Google Scholar 

  8. Luo, L., Guo, K., Fan, W., Lu, Y., Chen, L., Wang, Y., Shao, Y., Wu, G., Xu, J., and Lü, L., Exp. Ther. Med., 2017, vol. 13, no. 2, pp. 645−650. https://doi.org/10.3892/etm.2016.4016

    Article  CAS  PubMed  Google Scholar 

  9. Boitsova, E.B., Morgun, A.V., Osipova, E.D., Pozhilenkova, E.A., Martinova, G.P., Frolova, O.V., Olovannikova, R.Y., Tohidpour, A., Gorina, Y.V., Panina, Y.A., and Salmina, A.B., J. Neuroinflammation, 2018, vol. 15, no. 1, 196. https://doi.org/10.1186/s12974-018-1233-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khilazheva, E.D., Boitsova, E.B., Pozhilenkova, E.A., Solonchuk, Yu.R., and Salmina, A.B., Tsitologiya, 2015, vol. 57, no. 10, pp. 710–713.

    CAS  Google Scholar 

  11. Ehret, F., Vogler, S., and Kempermann, G., Stem Cell Res., 2015, vol. 15, no. 3, pp. 514−521. https://doi.org/10.1016/j.scr.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  12. Salmin, V.V., Komleva, Y.K., Kuvacheva, N.V., Morgun, A.V., Khilazheva, E.D., Lopatina, O.L., Pozhilenkova, E.A., Shapovalov, K.A., Uspen-skaya, Y.A., and Salmina, A.B., Front. Aging Neurosci., 2017, vol. 9, 245. https://doi.org/10.3389/fnagi.2017.00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan, J., Das, G., Gupta, V., Mohapatra, S., Ghosh, S., and Ghosh, S., ACS Chem. Neurosci., 2018, vol. 9, no. 11, pp. 2870−2878. https://doi.org/10.1021/acschemneuro.8b00414

    Article  CAS  PubMed  Google Scholar 

  14. Beccari, S., Valero, J., Maletic-Savatic, M., and Sierra, A., Sci. Rep., 2017, vol. 7, no. 1, 16528. https://doi.org/10.1038/s41598-017-16466-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falk, S. and Götz, M., Curr. Opin. Neurobiol., 2017, vol. 47, pp. 188−195. https://doi.org/10.1016/j.conb.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  16. Wilhelmsson, U., Faiz, M., de Pablo, Y., Sjöqvist, M., Andersson, D., Widestrand, A., Potokar, M., Stenovec, M., Smith, P.L., Shinjyo, N., Pekny, T., Zorec, R., Ståhlberg, A., Pekna, M., Sahlgren, C., and Pekny, M., Stem Cells., 2012, vol. 30, no. 10, pp. 2320−2329. https://doi.org/10.1002/stem.1196

    Article  CAS  PubMed  Google Scholar 

  17. Robinson, C., Apgar, C., and Shapiro, L.A., Neural Plasticity, 2017, vol. 26, no. 7, pp. 1314−1318. https://doi.org/10.1155/2016/1347987

    Article  Google Scholar 

  18. Gourine, A.V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M.F., Lane, S., Teschemacher, A.G., Spyer, K.M., Deisseroth, K., and Kasparov, S., Science, 2010, vol. 329, no. 5991, pp. 571−575. https://doi.org/10.1126/science.1190721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Figueiredo, M.F., Lane, S., Stout, R.F., Liu, B., Parpura, V., Teschemacher, A.G., and Kasparov, S., Cell Calcium, 2014, vol. 56, no. 3, pp. 208−214. https://doi.org/10.1016/j.ceca.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, Y., Xue, Q., Tang, Q., Hou, M., Qi, H., Chen, G., Chen, W., Zhang, J., Chen, Y., and Xu, X., Microvasc. Res., 2013, vol. 90, pp. 199−205. https://doi.org/10.1016/j.mvr.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  21. Scrace, S., O’Neill, E., Hammond, E.M., and Pires, I.M., Methods in Molecular Biology (Clifton, N.J.), 2013, vol. 1046, pp. 295−306. https://doi.org/10.1007/978-1-62703-538-5_17

    Article  CAS  Google Scholar 

  22. Figueiredo, M., Figueiredo, M., Lane, S., Stout, R.F., Jr., Liu, B., Parpura, V., Teschema-cher, A.G., and Kasparov, S., Cell Calcium, 2014, vol. 56, no. 3, pp. 208−214. https://doi.org/10.1016/j.ceca.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itokazu, Y. and Yu, R.K., Mol. Neurobiol., 2014, vol. 50, no. 1, pp. 186−196. https://doi.org/10.1007/s12035-014-8634-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hack, M., Sugimori, M., Lundberg, C., Nakafuku, M., and Götz, M., Mol. Cell. Neurosci., 2004, vol. 25, no. 4, pp. 664−678.

    Article  CAS  Google Scholar 

  25. Sakurai, K. and Osumi, N., J. Neurosci., 2008, vol. 28, no. 18, pp. 4604−4612. https://doi.org/10.1523/JNEUROSCI.5074-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, Z., Ure, K., Ables, J.L., Lagace, D.C., Nave, K.A., Goebbels, S., Eisch, A.J., and Hsieh, J., Nat. Neurosci., 2009, vol. 12, no. 9, pp. 1090–1092. https://doi.org/10.1038/nn.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boutin, C., Hardt, O., de Chevigny, A., Coré, N., Goebbels, S., Seidenfaden, R., Bosio, A., and Cremeret, H., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 3, pp. 1201−1206. https://doi.org/10.1073/pnas.0909015107

    Article  PubMed  Google Scholar 

  28. Roybon, L., Hjalt, T., Stott, S., Guillemot, F., Li, J.Y., and Brundin, P., PLoS One, 2009, vol. 4, no. 3, e4779. https://doi.org/10.1371/journal.pone.0004779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thakurela, S., Tiwari, N., Schick, S., Garding, A., Ivanek, R., Berninger, B., and Tiwari, V.K., Cell Discov., 2016, vol. 9, no. 2, 15045. https://doi.org/10.1038/celldisc.2015.45

    Article  CAS  Google Scholar 

  30. Song, H., Stevens, C.F., and Gage, F.H., Nature, 2002, vol. 417, no. 6884, pp. 39−44.

    Article  CAS  Google Scholar 

  31. Cao, X., Li, L.P., Qin, X.H., Li, S.J., Zhang, M., Wang, Q., Hu, H.H., Fang, Y.Y., Gao, Y.B., Li, X.W., Sun, L.R., Xiong, W.C., Gao, T.M., and Zhu, X.H., Stem Cells, 2013, vol. 31, no. 8, pp. 1633−1643. https://doi.org/10.1002/stem.1408

    Article  CAS  PubMed  Google Scholar 

  32. Mohn, T.C. and Koob, A.O., J. Exp. Neurosci., 2015, vol. 9, no. 2, pp. 25−34. https://doi.org/10.4137/JEN.S25520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor S. Kasparov (University of Bristol, UK) for providing adenoviral vectors.

Funding

This work was performed within the State Assignment of the Ministry of Public Health of the Russian Federation (2018–2020) “New Technologies for the Management of Neurogenesis and Angiogenesis in the Brain.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Osipova.

Ethics declarations

Animal experiments were carried out in accordance with generally accepted ethical international standards and the principles of humanity stated in the European Community Directive (2010/63/EC) and the requirements of the order of the Ministry of Public Health of the Russian Federation no. 267 of June 19, 2003 “On the Approval of Laboratory Practice in the Russian Federation.”

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgun, A.V., Osipova, E.D., Boytsova, E.B. et al. Astrocyte-Mediated Regulation of Cell Development in the Model of Neurogenic Niche in Vitro Treated with Aβ1-42. Biochem. Moscow Suppl. Ser. B 14, 6–14 (2020). https://doi.org/10.1134/S1990750820010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750820010114

Keywords:

Navigation