Skip to main content
Log in

Design, synthesis, and anticancer activities of 8,9-substituted Luotonin A analogs as novel topoisomerase I inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 8,9-substituted Luotonin A analogs were designed, synthesized, and evaluated for antiproliferative activity against four cancer cell lines. The structure–activity relationship study revealed that the in vitro anticancer activity of Luotonin A was significantly improved by the introduction of 8-piperazine group and the 5-deaza modification. Two promising compounds 6a and 7a displayed potent topoisomerase I inhibitory activity. And a rational binding mode of 7a with topoisomerase I–DNA complex was proposed based on the molecular docking study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013;8:82–95. https://doi.org/10.1021/cb300648v

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem. 2019;171:129–68. https://doi.org/10.1016/j.ejmech.2019.03.034

    Article  PubMed  CAS  Google Scholar 

  3. Li QY, Zu YG, Shi RZ, Yao LP. Review camptothecin: current perspectives. Curr Med Chem. 2006;13:2021–39. https://doi.org/10.2174/092986706777585004

    Article  PubMed  CAS  Google Scholar 

  4. Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A, et al. The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett. 2017;27:701–7. https://doi.org/10.1016/j.bmcl.2016.12.085

    Article  PubMed  CAS  Google Scholar 

  5. Yang XY, Zhao HY, Lei H, Yuan B, Mao S, Xin M, et al. Synthesis and biological evaluation of 10-substituted camptothecin derivatives with improved water solubility and activity. ChemMedChem. 2021;16:1000–10. https://doi.org/10.1002/cmdc.202000753

    Article  PubMed  CAS  Google Scholar 

  6. Zi CT, Yang L, Dong FW, Kong QH, Ding ZT, Zhou J, et al. Synthesis and antitumor activity of camptothecin-4β-triazolopodophyllotoxin conjugates. Nat Prod Res. 2020;34:2301–9. https://doi.org/10.1080/14786419.2018.1538223

    Article  PubMed  CAS  Google Scholar 

  7. Song ZL, Yang GZ, Li JC, Liu YQ, Yang CJ, Goto M, et al. Design and synthesis of novel 7-[(N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat Prod Res. 2020;34:2022–9. https://doi.org/10.1080/14786419.2019.1573231

    Article  PubMed  CAS  Google Scholar 

  8. Hong BH, Meng GR, Tan HY, Li JJ, Kong KM, Zhang Q. Synthesis and antitumor activity of pyrano[3,2-i]-fused camptothecin derivatives. Med Chem Res. 2019;28:884–91. https://doi.org/10.1007/s00044-019-02342-4

    Article  CAS  Google Scholar 

  9. Wang XH, Yang FH, Zhao CK, Gao L, Li C. Sealed tube promoted coupling of camptothecin and norcantharidin acid ester and their preliminary biological activity evaluation in vitro. Med Chem Res. 2018;27:406–11. https://doi.org/10.1007/s00044-017-2066-8

    Article  CAS  Google Scholar 

  10. Zhang XQ, Cao M, Xing J, Liu F, Dong P, Tian X, et al. TQ-B3203, a potent proliferation inhibitor derived from camptothecin. Med Chem Res. 2017;26:3395–406. https://doi.org/10.1007/s00044-017-2032-5

    Article  CAS  Google Scholar 

  11. Seiter K. Toxicity of the topoisomerase I inhibitors. Expert Opin Drug Saf. 2005;4:45–53. https://doi.org/10.1517/14740338.4.1.45

    Article  PubMed  CAS  Google Scholar 

  12. Zhang B, Dou Z, Xiong Z, Wang N, He S, Yan X, et al. Design, synthesis and biological research of novel N-phenylbenzamide-4-methylamine acridine derivatives as potential topoisomerase I/II and apoptosis-inducing agents. Bioorg Med Chem Lett. 2019;29:126714–20. https://doi.org/10.1016/j.bmcl.2019.126714

    Article  PubMed  CAS  Google Scholar 

  13. Szafran MJ, Kolodziej M, Skut P, Medapi B, Domagała A, Trojanowski D, et al. Amsacrine derivatives selectively inhibit mycobacterial topoisomerase I (TopA), impair M. smegmatis growth and disturb chromosome replication. Front Microbiol. 2018;9:1592–605. https://doi.org/10.3389/fmicb.2018.01592

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beck DE, Reddy PV, Lv W, Abdelmalak M, Tender GS, Lopez S, et al. Investigation of the structure-activity relationships of aza-A-ring indenoisoquinoline topoisomerase I poisons. J Med Chem. 2016;59:3840–53. https://doi.org/10.1021/acs.jmedchem.6b00003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Elsayed MSA, Su Y, Wang P, Sethi T, Agama K, Ravji A, et al. Design and synthesis of chlorinated and fluorinated 7-azaindenoisoquinolines as potent cytotoxic anticancer agents that inhibit topoisomerase I. J Med Chem. 2017;60:5364–76. https://doi.org/10.1021/acs.jmedchem.6b01870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang S, Fang K, Dong G, Chen S, Liu N, Miao Z, et al. Scaffold diversity inspired by the natural product evodiamine: discovery of highly potent and multitargeting antitumor agents. J Med Chem. 2015;58:6678–96. https://doi.org/10.1021/acs.jmedchem.5b00910

    Article  PubMed  CAS  Google Scholar 

  17. Ma ZZ, Hano Y, Nomura T, Chen YJ. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles. 1997;46:541–6. https://doi.org/10.3987/COM-97-S65

    Article  CAS  Google Scholar 

  18. Cagir A, Jones SH, Gao R, Eisenhauer BM, Hecht SM. Luotonin A. A naturally occurring human DNA topoisomerase I poison. J Am Chem Soc. 2003;125:13628–9. https://doi.org/10.1021/ja0368857

    Article  PubMed  CAS  Google Scholar 

  19. Almansour AI, Arumugam N, Suresh Kumar R, Mahalingam SM, Sau S, Bianchini G, et al. Design, synthesis and antiproliferative activity of decarbonyl luotonin analogues. Eur J Med Chem. 2017;138:932–41. https://doi.org/10.1016/j.ejmech.2017.07.027

    Article  PubMed  CAS  Google Scholar 

  20. Domagala JM, Hanna LD, Heifetz CL, Hutt MP, Mich TF, Sanchez JP, et al. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem. 1986;29:394–404. https://doi.org/10.1021/jm00153a015

    Article  PubMed  CAS  Google Scholar 

  21. Delgado JL, Lentz SRC, Kulkarni CA, Chheda PR, Held HA, Hiasa H, et al. Probing structural requirements for human topoisomerase I inhibition by a novel N1-biphenyl fluoroquinolone. Eur J Med Chem. 2019;172:109–30. https://doi.org/10.1016/j.ejmech.2019.03.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oppegard LM, Delgado JL, Kulkarni CA, Towle TR, Hart DE, Williams BP, et al. Novel N-1 substituted fluoroquinolones inhibit human topoisomerase I activity and exhibit anti-proliferative activity. Invest New Drugs. 2019;37:378–83. https://doi.org/10.1007/s10637-018-0666-x

    Article  PubMed  CAS  Google Scholar 

  23. Ge R, Zhao Q, Xie Z, Lu L, Guo Q, Li Z, et al. Synthesis and biological evaluation of 6-fluoro-3-phenyl-7-piperazinyl quinolone derivatives as potential topoisomerase I inhibitors. Eur J Med Chem. 2016;122:465–74. https://doi.org/10.1016/j.ejmech.2016.06.054

    Article  PubMed  CAS  Google Scholar 

  24. Ye R, Cao Y, Xi X, Liu L, Chen T. Metal- and radical-free aerobic oxidation of heteroaromatic methanes: an efficient synthesis of heteroaromatic aldehydes. Org Biomol Chem. 2019;17:4220–4. https://doi.org/10.1039/c9ob00490d

    Article  PubMed  CAS  Google Scholar 

  25. Yang L, Shi X, Hu BQ, Wang LX. Iodine-catalyzed oxidative benzylic C-H bond amination of azaarenes: practical synthesis of quinazolin-4(3H)-ones. Asian J Org Chem. 2016;5:494–8. https://doi.org/10.1002/ajoc.201600041

    Article  CAS  Google Scholar 

  26. Kwon SH, Seo HA, Cheon CH. Total synthesis of luotonin A and rutaecarpine from an aldimine via the designed cyclization. Org Lett. 2016;18:5280–3. https://doi.org/10.1021/acs.orglett.6b02597

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Zhou CX, Yan JW, Hou JQ, Chen SB, Ou TM, et al. Synthesis and evaluation of quinazolone derivatives as a new class of c-KIT G-quadruplex binding ligands. ACS Med Chem Lett. 2013;4:909–14. https://doi.org/10.1021/ml400271y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang YQ, Huang ZL, Chen SB, Wang CX, Shan C, Yin QK, et al. Design, synthesis, and evaluation of new selective NM23-H2 binders as c-MYC transcription inhibitors via disruption of the NM23-H2/G-quadruplex interaction. J Med Chem. 2017;60:6924–41. https://doi.org/10.1021/acs.jmedchem.7b00421

    Article  PubMed  CAS  Google Scholar 

  29. Che T, Chen SB, Tu JL, Wang B, Wang YQ, Zhang Y, et al. Discovery of novel schizocommunin derivatives as telomeric G-quadruplex ligands that trigger telomere dysfunction and the deoxyribonucleic acid (DNA) damage response. J Med Chem. 2018;61:3436–53. https://doi.org/10.1021/acs.jmedchem.7b01615

    Article  PubMed  CAS  Google Scholar 

  30. Shemchuk LA, Chernykh VP, Krys’kiv OS. Reaction of anthranilic acid amides with cyclic anhydrides. Russ J Org Chem. 2006;42:382–7. https://doi.org/10.1134/s1070428006030079

    Article  CAS  Google Scholar 

  31. Nathubhai A, Haikarainen T, Hayward PC, Muñoz-Descalzo S, Thompson AS, Lloyd MD, et al. Structure-activity relationships of 2-arylquinazolin-4-ones as highly selective and potent inhibitors of the tankyrases. Eur J Med Chem. 2016;118:316–27. https://doi.org/10.1016/j.ejmech.2016.04.041

    Article  PubMed  CAS  Google Scholar 

  32. Liu G, Chao Q, Hadd MJ, Holladay MW, Abraham S, Setti E. Jak kinase modulating quinazoline derivatives and methods of use thereof. WO2010099379. 2010.

  33. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. https://doi.org/10.1002/jcc.21256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31:455–61. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Project of Education Department of Hubei Province (D20192003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Hu or Laichun Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Li, H., Wang, J. et al. Design, synthesis, and anticancer activities of 8,9-substituted Luotonin A analogs as novel topoisomerase I inhibitors. Med Chem Res 30, 1512–1522 (2021). https://doi.org/10.1007/s00044-021-02749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02749-y

Keywords

Navigation