Skip to main content
Log in

Precisely Located C@g-C3N4 Nanorod for Efficient Visible Light Photocatalysis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Herein we report a core–shell structured C@g-C3N4 nanorod with precisely located carbon and carbon nitride, fabricated by a nanocasting method using externally functionalized “non-calcinated” SBA-15 as a template. The resultant C@g-C3N4 core–shell architecture not only promotes the charge separation and visible light absorption, but also improves the utilization of active sites and their stability. Thanks to these features C@g-C3N4 nanorod proved to be a more efficient photocatalyst for degradation of methylene blue and phenol than the pristine (mesoporous) carbon nitride polymers. This is to our knowledge a unique example of g-C3N4-containing composite that demonstrates an intended location of active sites and controlled morphology together with excellent optical activity as well as photo redox performance. Such a core–shell structured C@g-C3N4 nanorod can find wide applications in environmental treatment and photoelectrochemical detection of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wang, Y., Wang, X.C., and Antonietti, M., Angew. Chem., Int. Ed., 2012, vol. 51, p. 68.

    Article  CAS  Google Scholar 

  2. Li, W.L., Hu, Y.P., Rodíguez-Castellón, E., and Bandosz, T.J., J. Mater. Chem. A, 2017, vol. 5, p. 16315.

    Article  CAS  Google Scholar 

  3. Ma, X.G., Lv, Y.H., Xu, J., Liu, Y.F., Zhang, R.Q., and Zhu Y.F., J. Phys. Chem. C, 2012, vol. 116, p. 23485.

    Article  CAS  Google Scholar 

  4. Niu, P., Zhang, L.L., Liu, G., and Cheng, H.M., Adv. Funct. Mater., 2012, vol. 22, p. 4763.

    Article  CAS  Google Scholar 

  5. Cao, S.W., Low, J.X., Yu, J.G., and Jaroniec, M., Adv. Mater., 2015, vol. 27, p. 2150.

    Article  CAS  PubMed  Google Scholar 

  6. Ge, L. and Han, C.C., Appl. Catal., B, 2012, vol. 117, p. 268.

    Article  CAS  Google Scholar 

  7. Li, Y.B., Zhang, H.M., Liu, P.R., Wang, D., Li, Y., and Zhao, H.J., Small, 2013, vol. 9, p. 3336.

    CAS  PubMed  Google Scholar 

  8. Chai, B., Liao, X., Song, F.K., and Zhou, H., Dalton Trans., 2014, vol. 43, p. 982.

    Article  CAS  PubMed  Google Scholar 

  9. Lyth, S.M., Nabae, Y., Islam, N.M., Kuroki, S., Kakimoto, M., and Miyata, S., J. Electroanal. Chem., 2011, vol. 158, p. 194.

    Article  CAS  Google Scholar 

  10. Lyth, S.M., Nabae, Y., Moriya, S., Kuroki, S., Kakimoto, M.A., Ozaki, J. I., and Miyata, S., J. Phys. Chem. C, 2009, vol. 113, p. 20148.

    Article  CAS  Google Scholar 

  11. Xu, Y.G., Xu, H., Wang, L., Yan, J., Li, H.M., Song, Y.H., Huang, L.Y., and Cai, G.B., Dalton Trans., 2013, vol. 42, p. 7604.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, S.B., Feng, X.L., Wang, X.C., and Mllen, K., Angew. Chem., Int. Ed., 2011, vol. 50, p. 5339.

    Article  CAS  Google Scholar 

  13. Bai, X.J., Wang, L., Wang, Y.J., Yao, W.Q., and Zhu, Y.F., Appl. Catal., B, 2014, vols. 152–153, p. 262.

    Article  CAS  Google Scholar 

  14. Zheng, Y., Jiao, Y., Chen, J., Liu, J., Liang, J., Du, A.J., Zhang, W.M., Zhu, Z.H., Smith, S.C., Jaroniec, M., Lu, G.Q., and Qiao, S.Z., J. Am. Chem. Soc., 2011, vol. 133, p. 20116.

    Article  CAS  PubMed  Google Scholar 

  15. Li, X.H., Zhang, J.S., Chen, X.F., Fischer, A., Thomas, A., Antonietti, M., and Wang, X.C., Chem. Mater., 2011, vol. 32, p. 4344.

    Article  CAS  Google Scholar 

  16. Zhang, J.S., Guo, F.S., and Wang, X.C., Adv. Funct. Mater., 2013, vol. 23, p. 3008.

    Article  CAS  Google Scholar 

  17. Liang, J., Zheng, Y., Chen, J., Liu, J., Hulicova-Jurcakova, D., Jaroniec, M., and Qiao, S.Z., Angew. Chem., Int. Ed., 2012, vol. 51,p. 3892.

    Article  CAS  Google Scholar 

  18. Shi, L., Liang, L., Ma, J., Wang, F.X., and Sun, J.M., Dalton Trans., 2014, vol. 43, p. 7236.

    Article  CAS  PubMed  Google Scholar 

  19. Li, M., Wang, H., Li, X.B., Zhang, S.B., Han, J.Y., Masters, A.F., Maschmeyer, T., and Liu, X., ChemCatChem., 2018, vol. 10, p. 581.

    Article  CAS  Google Scholar 

  20. Talapaneni, S.N., Anandan, S., Mane, G.P., Anand, C., Dhawale, D.S., Varghese, S., Mano, A., Mori, T., and Vinu, A., J. Mater.Chem., 2012, vol. 22, p. 9831.

    Article  CAS  Google Scholar 

  21. Liu, J., Huang, J.H., Zhou, H., and Antonietti, M., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 8434.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, J., Zhu, J.H., Ai, W., Fan, Z.X., Shen, X.N., Zou, C.J., Liu, J.P., Zhang, H., and Yu, T., Energy Environ. Sci., 2014, vol. 7, p. 2670.

    Article  CAS  Google Scholar 

  23. Mane, G.P., Talapaneni, S.N., Anand, C., Varghese, S., Iwai, H., Ji, Q.M., Ariga, K., Mori, T., and Vinu, A., Adv. Funct. Mater., 2012, vol. 22, p. 3596.

    Article  CAS  Google Scholar 

  24. Liu, J.H., Zhang, T., Wang, Z.C., Dawson, G., and Chen, W., J. Mater. Chem., vol. 21, p. 14398.

  25. Yang, Y., Zhang, W., Zhang, Y., Zheng, A., Sun, H., Li, X.S., Liu, S.Y., Zhang, P.F., and Zhang, X., Nano Res., 2015, vol. 8, p. 3404.

    Article  CAS  Google Scholar 

  26. Tao, J., Xiong, J.Q., Jiao, C.L., Zhang, D.S., Lin, H., and Chen, Y.Y., ACS Sustainable Chem. Eng., 2016, vol. 4, p. 60.

    Article  CAS  Google Scholar 

  27. Li, Y.B., Zhang, H.M., Liu, P.R., Wang, D., Li, Y., and Zhao, H.J., Small, 2013, vol. 9, p. 3336.

    CAS  PubMed  Google Scholar 

  28. Yang, Y., Zhang, W., Ma, X.H., Zhao, H.R., and Zhang, X., ChemCatChem., 2015, vol. 7, p. 3454.

    Article  CAS  Google Scholar 

  29. Yang, Y., Sun, C.J., Brown, D.E., Zhang, L.Q., Yang, F., Zhao, H.R., Wang, Y., Ma, X.H., Zhang, X., and Ren, Y., Green Chem., 2016, vol. 18, p. 3558.

    Article  CAS  Google Scholar 

  30. Lee, E.Z., Jun, Y.S., Hong, W.H., Thomas, A., and Jin, M.M., Angew. Chem., Int. Ed., 2010, vol. 49, p. 9706.

    Article  CAS  Google Scholar 

  31. Velo-Gala, I., López-Penalver, J., Sánchez-Polo, M., and Rivera-Utrilla, J., Appl. Catal., B, 2017, vol. 207, p. 412.

    Article  CAS  Google Scholar 

  32. Yang, X.L., Qian, F.F., Zou, G.J., Li, M.L., Lu, J.R., Li, Y.M., and Bao, M.T., Appl. Catal, B, 2016, vol. 193, p. 22.

    Article  CAS  Google Scholar 

  33. Zhang, G.G., Zhang, M.W., Ye, X.X., Qiu, X.Q., Lin, S., and Wang, X.C., Adv. Mater., 2014, vol. 26, p. 805.

    Article  CAS  PubMed  Google Scholar 

  34. Bai, X.J., Wang, L., Zong, R.L., and Zhu, Y.F., J. Phys. Chem. C, 2013, vol. 117, p. 9952.

    Article  CAS  Google Scholar 

  35. An, C. H., Peng, S., and Sun, Y.G., Adv. Mater., 2010, vol. 22, p. 2570.

    Article  CAS  PubMed  Google Scholar 

  36. Pan, C.S., Xu, J., Wang, Y.J., Li, D., and Zhu, Y.F., Adv. Funct. Mater., 2012, vol. 22, p. 1518.

    Article  CAS  Google Scholar 

  37. Wang, Y.J., Bai, X.J., Pan, C.S., He, J., and Zhu, Y.F., J. Mater. Chem., 2012, vol. 22, p. 11568.

    Article  CAS  Google Scholar 

  38. Huang, L.Y., Xu, H., Zhang, R.X., Cheng, X.N., Xia, J.X., Xu, Y.G., and Li, H.M., Appl. Surf. Sci., 2013, vol. 283, p. 25.

    Article  CAS  Google Scholar 

  39. Huang, L.Y., Li, Y.P., Xu, H., Xu, Y.G., Xia, J.X., Wang, K., Li, H.M., and Cheng, X.N., RSC Adv., 2013, vol. 3, p. 22269.

    Article  CAS  Google Scholar 

  40. Bai, X.J., Zong, R.L., Li, C.X., Liu, D., Liu, Y.F., and Zhu, Y.F., Appl. Catal., B, 2014, vol. 147, p. 82.

    Article  CAS  Google Scholar 

  41. Jiang, D.L., Chen, L.L., Zhu, J.J., Chen, M., Shi, W.W., and Xie, J.M., Dalton Trans., 2013, vol. 42, p. 15726.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z.-T., Xu, J.-L., Zhou, H., and Zhang, X., Rare Met., 2019, vol. 38, p. 459.

    Article  CAS  Google Scholar 

  43. Zhu, B.C., Cheng, B., Zhang, L.Y., and Yu, J.G., Carbon Energy, 2019, vol. 1, p. 32.

    Article  CAS  Google Scholar 

  44. Zhou, C., Shi, R., Shang, L., Wu, L.-Z., Tung, C.-H., and Zhang, T.R., Nano Res.,2018, vol. 11, p. 3462.

    Article  CAS  Google Scholar 

  45. Wang, X.S., Zhou, C., Shi, R., Liu, Q.Q., Waterhouse, G.I.N., Wu, L.Z., Tung, C.-H., and Zhang, T.R., Nano Res., 2019, vol. 12, p. 2385.

    Article  CAS  Google Scholar 

  46. Pan, C.S. and Zhu, Y.F., Environ. Sci. Technol., 2010, vol. 44, p. 5570.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, C.C., Wang, Q., Lei, P.X., Song, W.J., Ma, W.H., and Zhao, J.C., Environ. Sci. Technol., 2006, vol. 40, p. 3965.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (2018YFB1105100), and the funding from Science Foundation of China University of Petroleum, Beijing (24620188JC005).

Author information

Authors and Affiliations

Authors

Contributions

Ying Yang: writing—original draft, writing—review and editing, supervision. Ke Yang: investigation. Gangli Zhu: methodology. Shuai Shao: investigation. Na Zhang: methodology. Shijie Hao: supervision.

Corresponding author

Correspondence to Ying Yang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: CNT, carbon nanotube; OMC, ordered mesoporous carbon; CTES, 2-cyanoethyltriethoxysilane; DCDA, dicyandiamide; B-CN, bulk g-C3N4; mpg-C3N4, mesoporous g-C3N4; TEOS, tetraethyl orthosilicate; MB, methyl blue; DMF, N,N'-dimethylformamide; t-BuOH, tert-butyl alcohol, EDTA-2Na, ethylenediaminetetraacetic acid disodium salt; BQ, 1,4-benzoquinone; TEM, transmission electron microscopy, HAADF-STEM, high-angle annular dark-field scanning TEM; XRD, X-ray diffraction; FT-IR, Fourier transform infrared spectroscopy; DRS, diffuse reflectance absorption; EIS, electrochemical impedance spectroscopy; PL, photoluminescence; SAXS, small-angle X-ray scattering; RHE, reversible hydrogen electrode; AFM, atomic force microscopy; E, photocatalytic degradation efficiency; EDS, energy-dispersive X-ray spectroscopy; VB, valence band; CB, conduction band; NHE, normal hydrogen electrode.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, K., Zhu, G. et al. Precisely Located C@g-C3N4 Nanorod for Efficient Visible Light Photocatalysis. Kinet Catal 62, 375–386 (2021). https://doi.org/10.1134/S0023158421030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421030101

Keywords:

Navigation