Skip to main content
Log in

Activation of Hydrogen Peroxide by Acetonitrile in the Oxidation of Thioethers: Reaction Kinetics and Mechanism

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of diethyl sulfide (Et2S) with hydrogen peroxide (H2O2) in aqueous solutions of acetonitrile (MeCN) was studied using a kinetic distribution method. It was found that the order of the reaction with respect to the substrate depends on pH and changes from the first at pH 8.06 to nearly zero at pH 11.02. The initial rates of Et2S consumption increase with pH and linearly depend on the concentrations of the hydroperoxide anion (HOO) and MeCN. It was assumed that the reaction involves the nonequilibrium formation of peroxyimidate in the slow stage of the interaction of HOO with MeCN followed by the rapid oxidation of Et2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. According to Gillitt et al. [17], we hypothesized that the additives of MeCN do not have a significant effect on Ka.

  2. As demonstrated previously [6], an increase in the solubility of Et2S in aqueous alcohol solutions makes it possible to compensate increase in the reaction rate constants and provide a high rate (W = k[Et2S]l of its oxidation.

REFERENCES

  1. Wagner, G.W. and Yang, Y.C., Ind. Eng. Chem. Res., 2002, vol. 41, no. 8, p. 1925.

    Article  CAS  Google Scholar 

  2. Anisimov, A.V. and Tarakanova, A.V., Russ. J. Gen. Chem., 2008, vol. 79, p. 1264.

    Article  Google Scholar 

  3. Fernandez, I. and Khiar, N., Chem. Rev., 2003, vol. 103, no. 9, p. 3651.

    Article  CAS  Google Scholar 

  4. Das, R. and Chakraborty, D., Tetrahedron Lett., 2010, vol. 51, no. 48, p. 6255.

    Article  CAS  Google Scholar 

  5. Richardson, D.E., Yao, H., Frank, K.M., and Bennett, D.A., J. Am. Chem. Soc., 2000, vol. 122, no. 8, p. 1729.

    Article  CAS  Google Scholar 

  6. Lobachev, V.L., Savelova, V.A., and Prokop’eva, T.M., Teor. Eksp. Khim., 2004, vol. 40, no. 3, p. 157.

    Google Scholar 

  7. Davies, D.M., Deary, M.E., Quill, K., and Smith, R.A., Chem. Eur. J., 2005, vol. 11, no. 12, p. 3552.

    Article  CAS  Google Scholar 

  8. Lobachev, V.L., Zimtseva, G.P., Matvienko, Ya.V., and Rudakov, E.S., Teor. Eksp. Khim., 2007, vol. 43, no. 1, p. 38.

    Google Scholar 

  9. Durrant, M.C., Davies, D.M., and Deary, M.E., Org. Biomol. Chem., 2011, vol. 9, no. 20, p. 7249.

    Article  CAS  Google Scholar 

  10. Lobachev, V.L., Dyatlenko, L.M., and Zimtseva, G.P., Teor. Eksp. Khim., 2012, vol. 48, no. 3, p. 168.

    Google Scholar 

  11. Chiarini, M., Gillitt, N.D., and Bunton, C.A., Langmuir, 2002, vol. 18, no. 10, p. 3836.

    Article  CAS  Google Scholar 

  12. Lobachev, V.L., Dyatlenko, L.M., and Zimtseva, G.P., Teor. Eksp. Khim., 2012, vol. 48, no. 5, p. 322.

    Google Scholar 

  13. Lobachev, V.L., Zimtseva, G.P., and Rudakov, E.S., Teor. Eksp. Khim., 2005, vol. 41, no. 5, p. 290.

    Google Scholar 

  14. Amels, P., Elias, H., and Wannowius, K.-J., J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 15, p. 2537.

    Article  CAS  Google Scholar 

  15. Laus, G., J. Chem. Soc., Perkin Trans. 2, 2001, p. 864.

    Article  Google Scholar 

  16. Bethell, D., Graham, A.E., Heer, J.P., Markopoulou, O., Page, P.C.B., and Park, B.K., J. Chem. Soc., Perkin Trans. 2, 1993, p. 2161.

  17. Gillitt, N.D., Domingos, J., and Bunton, C.A., J. Phys. Org. Chem., 2003, vol. 16, p. 603.

    Article  CAS  Google Scholar 

  18. Payne, G.B., Deming, P.H., and Williams, P.H., J. Org. Chem., 1961, vol. 26, no. 3, p. 659.

    Article  CAS  Google Scholar 

  19. Veigand-Khil’gentag, Metody eksperimenta v organicheskoi khimii (Methods of Experiment in Organic Chemistry), Moscow: Khimiya, 1969, p. 944.

  20. Vaisberger, A., Proskauer, E., Riddik, J., and Tups, E., Organic Solvents, Moscow: Inostrannaya Literatura, 1958.

    Google Scholar 

  21. Rudakov, E.S., Reaktsii alkanov s okislitelyami, metallokompleksami i radikalami v rastvorakh (Reactions of Alcanes with Oxidizers, Metallocomplexes and Radicals in Solutions), Kiev: Naukova Dumka, 1985.

  22. Semiokhin, I.A., Strakhov, B.V., and Osipov, A.I., Kinetika khimicheskikh reaktsii (Kinetics of Chemical Reactions), Moscow: MSU, 1995.

  23. McLsaac, J.E., Jr., Ball, R.E., and Behrman, E.J., J. Org. Chem., 1971, vol. 36, no. 9, p. 3048.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Lobachev.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and designations: RSR', organic sulfides; MeCN, acetonitrile; RCN, nitriles; ArSMe, aryl methyl sulfides; Et2S, diethyl sulfide; PH, hydrogen peroxide; PI, activated form of Н2О2, peroxyimidic acid MeC(O2H)=NH2 or peroxyimidate MeC(O2H)=NH; GLC, gas–liquid chromatography; KDM, kinetic distribution method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liubymova, A.K., Bezbozhnaya, T.V. & Lobachev, V.L. Activation of Hydrogen Peroxide by Acetonitrile in the Oxidation of Thioethers: Reaction Kinetics and Mechanism. Kinet Catal 62, 342–349 (2021). https://doi.org/10.1134/S002315842103006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842103006X

Keywords:

Navigation