Skip to main content
Log in

Electroflotation Recovery of a Mixture of Cu, Ni, and Zn Hydroxides from Aqueous Ammonia Alkaline Solutions

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Electroflotation recovery of a mixture of copper, zinc, and nickel hydroxides from aqueous ammonia alkaline solutions was studied. It was shown that such an anionic surfactant as tall oil soaps from coniferous wood improves the efficiency of the electroflotation recovery of the mixture of hydroxides by decreasing the process time by a factor of 4–5, extending the pH range, and forming a more stable froth product. A scheme was proposed to describe the surface charge formation, the surfactant and ligand adsorption on the dispersed phase of metal hydroxides, and their influence on the electroflotation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vinogradov, S.S. Ekologicheski bezopasnoe gal’vani-cheskoe proizvodstvo (Environmentally Friendly Electroplating Production), Moscow: Globus, 2002. ISBN 5-89021-016-05

  2. Shekhanov, R.F. Gridchin, S.N., and Balmasov, A.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, vol. 59, no. 1, pp. 51–53. https://doi.org/10.6060/tcct.20165901.5296

    Article  CAS  Google Scholar 

  3. Shekhanov, R.F., Gridchin, S.N., Balmasov, A.V., and Rumyantseva, K.E., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, vol. 57, no. 8, pp. 47–51.

    CAS  Google Scholar 

  4. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Russ. J. Electrochem., 2018, vol. 54, no. 4, pp. 355–362. https://doi.org/10.1134/S1023193518040079

    Article  CAS  Google Scholar 

  5. Kolesnikov, V.A., Men’shutina, N.V., and Desyatov, A.V., Oborudovanie, tekhnologii i proektirovanie sistem ochistki stochnykh vod (Equipment, Technology, and Design of Wastewater Treatment Systems), Moscow: DeLi plyus, 2016.

  6. Ksenofontov, B.S., Santechnika magazine (Water supply pipes fittings), 2020, no. 2, pp. 46–51.

  7. Kolesnikov, V.A., Brodskiy, V.A., and Kolesnikov, V.A., Theor. Found. Chem. Eng., 2017, vol. 51, no. 4, pp. 361–375. https://doi.org/10.1134/S0040579517040200

  8. Kolesnikov, A., Milyutina, A., Desyatov, A., and Kolesnikov, V., Sep. Purif. Technol., 2019, vol. 209, pp. 73–78. https://doi.org/10.1016/j.seppur.2018.07.014

    Article  CAS  Google Scholar 

  9. Kolesnikov, A.V., Meshalkin, V.P., Davydkova, T.V., and Kolesnikov, V.A., Dokl. Phys. Chem., 2020, vol. 494, part 1, pp. 55–61. https://doi.org/10.31857/S2686953520050076

    Article  Google Scholar 

  10. Meshalkin, V.P., Kolesnikov, A.V., Savel’ev, D.S., Kolesnikov, V.A., Belozerskii, A.Yu., Men’shova, I.I., Maslyannikova, D.V., and Sycheva, O.V., Dokl. Phys. Chem., 2019, vol. 486, part 2, pp. 680–684. https://doi.org/10.31857/S0869-56524866680-684

    Article  Google Scholar 

  11. Garcia-Segura, S., Eiband, M.M.S.G., de Melo, J.V., Martínez-Huitle, C.A., and Martínez-Huitle, C.A., J. Electroanal. Chem., 2017, vol. 801, pp. 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047

    Article  CAS  Google Scholar 

  12. Paulista, L.O., Presumido, P.H., Theodoro, J.D.P., and Pinheiro, A.L.N., Environ. Sci. Pollution Res., 2018, vol. 25, pp. 19790–19800. https://doi.org/10.1007/s11356-018-2184-y

    Article  CAS  Google Scholar 

  13. Villalobos-Lara, A.D., Pérez, T., Uribe, A.R., Alfaro-Ayala, J.A., de Jesús, Ramírez-Minguela, J., and Minchaca-Mojica, J.I., J. Electroanal. Chem., 2020, vol. 858, p. 113807. https://doi.org/10.1016/j.jelechem.2019.113807

    Article  CAS  Google Scholar 

  14. Aoudj, S., Khelifa, A., and Drouiche, N., Chemosphere, 2016, vol. 180, pp. 379–387. https://doi.org/10.1080/19443994.2015.1095120

    Article  CAS  Google Scholar 

  15. Kolesnikov, V.A., Brodsky, V.A., Perfil’eva, A.V., and Kolesnikov, A.V., Pure Appl. Chem., 2017, vol. 89, no. 10, pp. 1535–1541. https://doi.org/10.1515/pac-2016-1113

    Article  CAS  Google Scholar 

  16. Merzouk, B., Madani, K., and Sekki, A., Desalination, 2010, vol. 250, no. 2, pp. 573–577. https://doi.org/10.1016/j.desal.2009.09.026

    Article  CAS  Google Scholar 

  17. Balla, W., Essadki, A.H., Gourich, B., Dassaa, A., Chenik, H., and Azzi, M., J. Hazard. Mater., 2010, vol. 184, nos. 1–3, pp. 710–716. https://doi.org/10.1016/j.jhazmat.2010.08.097

    Article  CAS  PubMed  Google Scholar 

  18. Mirshafiee, A., Rezaee, A., and Mamoory, R.S., J. Cleaner Prod., 2018, vol. 198, pp. 71–79. https://doi.org/10.1016/j.jclepro.2018.06.201

    Article  CAS  Google Scholar 

  19. Tchamango, S.R. and Darchen, A., J. Environ. Chem. Eng., 2018, vol. 6, no. 4, pp. 4546–4554. https://doi.org/10.1016/j.jece.2018.06.044

    Article  CAS  Google Scholar 

  20. Gamage, N.P. and Chellam, S., Environ. Sci. Technol., 2014, vol. 48, no. 2, pp. 1148–1157. https://doi.org/10.1021/es405080g

    Article  CAS  PubMed  Google Scholar 

  21. Ghernaout, D., Naceur, M.W., and Ghernaout, B., Desalin. Water Treat., 2011, nos. 1–3, pp. 287–320. https://doi.org/10.5004/dwt.2011.1493

  22. Kyzas, G. and Matis, K., Processes, 2018, vol. 6, no. 116, pp. 1–16. https://doi.org/10.3390/pr6080116

    Article  CAS  Google Scholar 

  23. Peleka, E.N., Gallios, G.P., and Matis, K.A., J. Chem. Technol. Biotechnol., 2018, vol. 93, pp. 615–623. https://doi.org/10.1002/jctb.5486

    Article  CAS  Google Scholar 

  24. Sillanpaa, M. and Shestakova, M., Electrochemical Water Treatment Methods: Fundamentals, Methods, and Full-Scale Applications, Butterworth-Heinemann, 2017.

    Book  Google Scholar 

  25. Lur’e Yu.Yu., Spravochnik po analiticheskoi khimii (Reference Book on Analytical Chemistry), Moscow: Khimiya, 1979.

Download references

ACKNOWLEDGMENTS

The studies were made using equipment of the Center for Shared Use of Equipment, Mendeleev University of Chemical Technology of Russia. The surfactants TOSc and   FLON-1 studied in this work were provided by Prof. N.A. Shapovalov, Shukhov Belgorod State Technological University.

Funding

This work was supported by the Mendeleev University of Chemical Technology of Russia (project no. Z-2020-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolesnikov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, V.P., Kolesnikov, V.A., Perfil’eva, A.V. et al. Electroflotation Recovery of a Mixture of Cu, Ni, and Zn Hydroxides from Aqueous Ammonia Alkaline Solutions. Dokl Phys Chem 497, 35–40 (2021). https://doi.org/10.1134/S0012501621040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501621040023

Keywords:

Navigation