Skip to main content
Log in

Solar Wind Discontinuity Interaction with the Bow Shock: Current Density Growth and Dawn-Dusk Asymmetry

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar wind is filled with various magnetic field fluctuations, and one of the most widespread types of such fluctuations is solar wind discontinuities. They are rapid high-amplitude magnetic field rotations sharing properties of nonlinear Alfvén waves and plane plasma slabs. They are believed to play an important role in the interaction of the solar wind with the Earth’s magnetosphere. Most studies of solar wind discontinuities are based on observations in pristine solar wind, often by solar wind monitors at L1. However, before interacting with the Earth’s magnetosphere, solar wind discontinuities cross the bow shock and can change their properties. In this study, we investigate the transformation of discontinuities due to the bow shock crossing. We compiled a set of 100 high-amplitude (\(>3\) nT) discontinuities observed by ARTEMIS in the upstream of the bow shock and by THEMIS in the downstream from the bow shock crossing (in the Earth’s magnetosheath). Comparison of discontinuity properties in the solar wind and magnetosheath demonstrates discontinuity thinning and current density increase in the magnetosheath. Although all considered solar wind discontinuities mostly resemble rotational discontinuities, in the magnetosheath they start having properties of tangential discontinuities. We reveal a clear dawn–dusk asymmetry of discontinuity properties that are likely related to the asymmetry of the ion foreshock. We discuss how solar wind discontinuity transformation at the bow shock crossing can alter their interaction with the Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acuña, M.H., Ogilvie, K.W., Baker, D.N., Curtis, S.A., Fairfield, D.H., Mish, W.H.: 1995, The global geospace science program and its investigations. Space Sci. Rev. 71, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Allanson, O., Neukirch, T., Wilson, F., Troscheit, S.: 2015, An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta. Phys. Plasmas 22(10), 102116. DOI. ADS.

    Article  ADS  Google Scholar 

  • An, X., Liu, T.Z., Bortnik, J., Osmane, A., Angelopoulos, V.: 2020, Formation of foreshock transients and associated secondary shocks. Astrophys. J. 901(1), 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Angelopoulos, V.: 2008, The THEMIS mission. Space Sci. Rev. 141, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Angelopoulos, V.: 2011, The ARTEMIS mission. Space Sci. Rev. 165, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E.W., Hatzigeorgiu, N., King, D.A., Larson, D., Lewis, J.W., McTiernan, J.M., Roberts, D.A., Russell, C.L., Hori, T., Kasahara, Y., Kumamoto, A., Matsuoka, A., Miyashita, Y., Miyoshi, Y., Shinohara, I., Teramoto, M., Faden, J.B., Halford, A.J., McCarthy, M., Millan, R.M., Sample, J.G., Smith, D.M., Woodger, L.A., Masson, A., Narock, A.A., Asamura, K., Chang, T.F., Chiang, C.-Y., Kazama, Y., Keika, K., Matsuda, S., Segawa, T., Seki, K., Shoji, M., Tam, S.W.Y., Umemura, N., Wang, B.-J., Wang, S.-Y., Redmon, R., Rodriguez, J.V., Singer, H.J., Vandegriff, J., Abe, S., Nose, M., Shinbori, A., Tanaka, Y.-M., UeNo, S., Andersson, L., Dunn, P., Fowler, C., Halekas, J.S., Hara, T., Harada, Y., Lee, C.O., Lillis, R., Mitchell, D.L., Argall, M.R., Bromund, K., Burch, J.L., Cohen, I.J., Galloy, M., Giles, B., Jaynes, A.N., Le Contel, O., Oka, M., Phan, T.D., Walsh, B.M., Westlake, J., Wilder, F.D., Bale, S.D., Livi, R., Pulupa, M., Whittlesey, P., DeWolfe, A., Harter, B., Lucas, E., Auster, U., Bonnell, J.W., Cully, C.M., Donovan, E., Ergun, R.E., Frey, H.U., Jackel, B., Keiling, A., Korth, H., McFadden, J.P., Nishimura, Y., Plaschke, F., Robert, P., Turner, D.L., Weygand, J.M., Candey, R.M., Johnson, R.C., Kovalick, T., Liu, M.H., McGuire, R.E., Breneman, A., Kersten, K., Schroeder, P.: 2019, The Space Physics Environment Data Analysis System (SPEDAS). Space Sci. Rev. 215, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Artemyev, A.V., Angelopoulos, V., McTiernan, J.M.: 2018, Near-Earth solar wind: plasma characteristics from ARTEMIS measurements. J. Geophys. Res. 123, 9955. DOI. ADS.

    Article  Google Scholar 

  • Artemyev, A.V., Angelopoulos, V., Vasko, I.Y.: 2019, Kinetic properties of solar wind discontinuities at 1 AU observed by ARTEMIS. J. Geophys. Res. 124(6), 3858. DOI. ADS.

    Article  Google Scholar 

  • Artemyev, A.V., Angelopoulos, V., Halekas, J.S., Vinogradov, A.A., Vasko, I.Y., Zelenyi, L.M.: 2018, Dynamics of intense currents in the solar wind. Astrophys. J. 859, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Artemyev, A.V., Angelopoulos, V., Vasko, I.-Y., Runov, A., Avanov, L.A., Giles, B.L., Russell, C.T., Strangeway, R.J.: 2019, On the kinetic nature of solar wind discontinuities. Geophys. Res. Lett. 46, 1185–1194. DOI.

    Article  Google Scholar 

  • Artemyev, A.V., Angelopoulos, V., Vasko, I.Y., Zelenyi, L.M.: 2020a, Ion nongyrotropy in solar wind discontinuities. Astrophys. J. Lett. 889(1), L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Artemyev, A.V., Neishtadt, A.I., Vasiliev, A.A., Angelopoulos, V., Vinogradov, A.A., Zelenyi, L.M.: 2020b, Superfast ion scattering by solar wind discontinuities. Phys. Rev. E 102(3), 033201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K.H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., Wiedemann, M.: 2008, The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Birn, J., Priest, E.R., (Eds.): 2007, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations. Cambridge University Press, Cambridge. ADS.

    Book  Google Scholar 

  • Biskamp, D.: 2000, Magnetic Reconnection in Plasmas. Cambridge University Press, Cambridge. ADS.

    Book  Google Scholar 

  • Blagau, A., Paschmann, G., Klecker, B., Marghitu, O.: 2015, Experimental test of the \(\rho (1-\alpha )\) evolution for rotational discontinuities: cluster magnetopause observations. Ann. Geophys. 33(1), 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Blanco-Cano, X., Kajdič, P., Omidi, N., Russell, C.T.: 2011, Foreshock cavitons for different interplanetary magnetic field geometries: simulations and observations. J. Geophys. Res. 116(A9), A09101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borodkova, N.L.: 2010, Effect of large and sharp changes of solar wind dynamic pressure on the Earths’s magnetosphere: analysis of several events. Cosm. Res. 48, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2010, Contribution of strong discontinuities to the power spectrum of the solar wind. Phys. Rev. Lett. 105(11), 111102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2020, What magnetospheric and ionospheric researchers should know about the solar wind. J. Atmos. Solar-Terr. Phys. 204, 105271. DOI. ADS.

    Article  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2009, Relativistic-electron dropouts and recovery: a superposed epoch study of the magnetosphere and the solar wind. J. Geophys. Res. 114, 2201. DOI. ADS.

    Article  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2010, Magnetic field at geosynchronous orbit during high-speed stream-driven storms: connections to the solar wind, the plasma sheet, and the outer electron radiation belt. J. Geophys. Res. 115, 8217. DOI. ADS.

    Article  Google Scholar 

  • Borovsky, J.E., Thomsen, M.F., Elphic, R.C.: 1998, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Cayton, T.E., Denton, M.H., Belian, R.D., Christensen, R.A., Ingraham, J.C.: 2016, The proton and electron radiation belts at geosynchronous orbit: statistics and behavior during high-speed stream-driven storms. J. Geophys. Res. 121, 5449. DOI. ADS.

    Article  Google Scholar 

  • Bruno, R., Carbone, V.: 2005, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burgess, D., Möbius, E., Scholer, M.: 2012, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. 173(1-4), 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burgess, D., Schwartz, S.J.: 1988, Colliding plasma structures: current sheet and perpendicular shock. J. Geophys. Res. 93(A10), 11327. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burgess, D., Wilkinson, W.P., Schwartz, S.J.: 1989, Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks. J. Geophys. Res. 94(A7), 8783. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1971, Nature and origin of directional discontinuities in the solar wind. J. Geophys. Res. 76, 4360. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Lemaire, J.F.: 1978, Interplanetary magnetic holes – theory. J. Geophys. Res. 83, 5157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Lemaire, J.F., Turner, J.M.: 1977, Interplanetary current sheets at 1 AU. J. Geophys. Res. 82, 3191. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buti, B., Jayanti, V., Viñas, A.F., Ghosh, S., Goldstein, M.L., Roberts, D.A., Lakhina, G.S., Tsurutani, B.T.: 1998, Nonlinear evolution of Alfvénic wave packets. Geophys. Res. Lett. 25, 2377. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cohen, I.J., Schwartz, S.J., Goodrich, K.A., Ahmadi, N., Ergun, R.E., Fuselier, S.A., Desai, M.I., Christian, E.R., McComas, D.J., Zank, G.P., Shuster, J.R., Vines, S.K., Mauk, B.H., Decker, R.B., Anderson, B.J., Westlake, J.H., Le Contel, O., Breuillard, H., Giles, B.L., Torbert, R.B., Burch, J.L.: 2019, High-resolution measurements of the cross-shock potential, ion reflection, and electron heating at an interplanetary shock by MMS. J. Geophys. Res. 124(6), 3961. DOI. ADS.

    Article  Google Scholar 

  • De Keyser, J., Roth, M., Söding, A.: 1998, Flow shear across solar wind discontinuities: WIND observations. Geophys. Res. Lett. 25, 2649. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dorfman, S., Hietala, H., Astfalk, P., Angelopoulos, V.: 2017, Growth rate measurement of ULF waves in the ion foreshock. Geophys. Res. Lett. 44, 2120. DOI. ADS.

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Erkaev, N.V., Biernat, H.K., Burlaga, L.F.: 1995, Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res. 100(A10), 19245. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, S.P., Lavraud, B., Thomsen, M.F., Lefebvre, B., Schwartz, S.J.: 2005, Electron anisotropy constraint in the magnetosheath: cluster observations. Geophys. Res. Lett. 32, L13109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gedalin, M.: 1996, Ion reflection at the shock front revisited. J. Geophys. Res. 101, 4871. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gedalin, M.: 1997, Ion dynamics and distribution at the quasiperpendicular collisionless shock front. Surv. Geophys. 18(6), 541. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gonzalez, W., Parker, E., (Eds.): 2016, Magnetic Reconnection 427. Springer International Publishing, New York. DOI. ADS.

    Book  Google Scholar 

  • Gosling, J.T., Thomsen, M.F.: 1985, Specularly reflected ions, shock foot thicknesses, and shock velocity determination in space. J. Geophys. Res. 90(A10), 9893. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., Servidio, S., Chuychai, P., Dmitruk, P.: 2009a, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett. 691, L111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2009b, Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? Phys. Rev. E 80(4), 046401. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., D’Amicis, R., Servidio, S., Dmitruk, P.: 2012, Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere. Astrophys. J. 749, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greco, A., Perri, S., Servidio, S., Yordanova, E., Veltri, P.: 2016, The complex structure of magnetic field discontinuities in the turbulent solar wind. Astrophys. J. Lett. 823, L39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grib, S.A.: 2012, Impact of solar wind tangential discontinuities on the Earth’s magnetosphere. Geomagn. Aeron. 52(8), 1113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, M.G., Neukirch, T.: 2009, One-dimensional Vlasov–Maxwell equilibrium for the Force-Free Harris Sheet. Phys. Rev. Lett. 102(13), 135003. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hartinger, M.D., Turner, D.L., Plaschke, F., Angelopoulos, V., Singer, H.: 2013, The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res. 118, 299. DOI. ADS.

    Article  Google Scholar 

  • Hietala, H., Phan, T.D., Angelopoulos, V., Oieroset, M., Archer, M.O., Karlsson, T., Plaschke, F.: 2018, In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection. Geophys. Res. Lett. 45(4), 1732. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, P.D.: 1970, Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci. 18, 1611. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J., Schwenn, R.: 2002, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107, 1121. DOI. ADS.

    Article  Google Scholar 

  • Kappenman, J.G.: 2003, Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations. Space Weather 1(3), 1016. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kawano, H., Savin, S., Lui, A.T.Y., Fujimoto, M., Kokubun, S., Mukai, T., Yamamoto, T., Saito, Y., Romanov, S., Nozdrachev, M., Yermolaev, Y.: 2000, Solar wind discontinuity – magnetosphere interactions observed by Interball-1 and Geotail: IACG Campaign #2. Adv. Space Res. 25(7-8), 1405. DOI. ADS.

    Article  ADS  Google Scholar 

  • Keika, K., Nakamura, R., Baumjohann, W., Angelopoulos, V., Kabin, K., Glassmeier, K.H., Sibeck, D.G., Magnes, W., Auster, H.U., Fornaçon, K.H., McFadden, J.P., Carlson, C.W., Lucek, E.A., Carr, C.M., Dandouras, I., Rankin, R.: 2009, Deformation and evolution of solar wind discontinuities through their interactions with the Earth’s bow shock. J. Geophys. Res. 114, A00C26. DOI. ADS.

    Article  Google Scholar 

  • Kennel, C.F., Mal’Kov, M.A., Sagdeev, R.Z., Shapiro, V.D., Khrabrov, A.V.: 1988, Alfvén shock wave trains with a dispersion. JETP Lett. 48, 79. ADS.

    ADS  Google Scholar 

  • Kepko, L., Viall, N.M.: 2019, The source, significance, and magnetospheric impact of periodic density structures within stream interaction regions. J. Geophys. Res. 124(10), 7722. DOI. ADS.

    Article  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Russell, C.T.: 1995, Introduction to Space Physics, 586. ADS.

    Book  Google Scholar 

  • Knetter, T., Neubauer, F.M., Horbury, T., Balogh, A.: 2004, Four-point discontinuity observations using Cluster magnetic field data: a statistical survey. J. Geophys. Res. 109, A06102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1960, Electrodynamics of Continuous Media, Course of Theoretical Physics, 8. Pergamon Press, Oxford, New York.

    MATH  Google Scholar 

  • Li, W., Thorne, R.M., Bortnik, J., Baker, D.N., Reeves, G.D., Kanekal, S.G., Spence, H.E., Green, J.C.: 2015, Solar wind conditions leading to efficient radiation belt electron acceleration: a superposed epoch analysis. Geophys. Res. Lett. 42, 6906. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, Y.: 1997, Generation of anomalous flows near the bow shock by its interaction with interplanetary discontinuities. J. Geophys. Res. 102(A11), 24265. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, Y.: 2002, Global hybrid simulation of hot flow anomalies near the bow shock and in the magnetosheath. Planet. Space Sci. 50(5-6), 577. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, Y.: 2005, Generation of Diamagnetic Cavities at the Bow Shock by Ion Kinetic Effects. Washington DC American Geophysical Union Geophysical Monograph Series 156, 31. DOI. ADS.

    Book  Google Scholar 

  • Lin, Y., Lee, L.C.: 2000, Magnetic field rotation and transition width in rotational discontinuities and Alfvén wave trains. J. Geophys. Res. 105, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, T.Z., Angelopoulos, V., Lu, S.: 2019, Relativistic electrons generated at Earth’s quasi-parallel bow shock. Sci. Adv. 5(7), eaaw1368. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Z., Turner, D.L., Angelopoulos, V., Omidi, N.: 2015, THEMIS observations of tangential discontinuity-driven foreshock bubbles. Geophys. Res. Lett. 42(19), 7860. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, T.Z., Turner, D.L., Angelopoulos, V., Omidi, N.: 2016, Multipoint observations of the structure and evolution of foreshock bubbles and their relation to hot flow anomalies. J. Geophys. Res. 121(6), 5489. DOI. ADS.

    Article  Google Scholar 

  • Lyons, L.R., Lee, D.-Y., Thorne, R.M., Horne, R.B., Smith, A.J.: 2005b, Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams. J. Geophys. Res. 110, 11202. DOI. ADS.

    Article  Google Scholar 

  • Lyons, L.R., Lee, D.-Y., Wang, C.-P., Mende, S.B.: 2005a, Global auroral responses to abrupt solar wind changes: dynamic pressure, substorm, and null events. J. Geophys. Res. 110(A8), A08208. DOI. ADS.

    Article  ADS  Google Scholar 

  • Malaspina, D.M., Claudepierre, S.G., Takahashi, K., Jaynes, A.N., Elkington, S.R., Ergun, R.E., Wygant, J.R., Reeves, G.D., Kletzing, C.A.: 2015, Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere. Geophys. Res. Lett. 42, 9203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Malkov, M.A., Kennel, C.F., Wu, C.C., Pellat, R., Shapiro, V.D.: 1991, Alfvén shock trains. Phys. Fluids, B Plasma Phys. 3, 1407. DOI. ADS.

    Article  Google Scholar 

  • McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., Angelopoulos, V.: 2008, The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 141, 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Medvedev, M.V., Diamond, P.H.: 1996, Fluid models for kinetic effects on coherent nonlinear Alfvén waves. I. Fundamental theory. Phys. Plasmas 3, 863. DOI. ADS.

    Article  ADS  Google Scholar 

  • Medvedev, M.V., Diamond, P.H., Shevchenko, V.I., Galinsky, V.L.: 1997a, Dissipative dynamics of collisionless nonlinear Alfvén wave trains. Phys. Rev. Lett. 78, 4934. DOI. ADS.

    Article  ADS  Google Scholar 

  • Medvedev, M.V., Shevchenko, V.I., Diamond, P.H., Galinsky, V.L.: 1997b, Fluid models for kinetic effects on coherent nonlinear Alfvén waves. II. Numerical solutions. Phys. Plasmas 4, 1257. DOI. ADS.

    Article  ADS  Google Scholar 

  • Němeček, Z., Sǎfrǎnkovǎ, J., Goncharov, O., Přech, L., Zastenker, G.N.: 2013, Ion scales of quasi-perpendicular low-Mach-number interplanetary shocks. Geophys. Res. Lett. 40, 4133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 2006, Comment on the abundances of rotational and tangential discontinuities in the solar wind. J. Geophys. Res. 111, A04103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Clay, D.R., Goldstein, B.E., Tsurutani, B.T., Zwickl, R.D.: 1984, A reexamination of rotational and tangential discontinuities in the solar wind. J. Geophys. Res. 89, 5395. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neukirch, T., Wilson, F., Allanson, O.: 2018, Collisionless current sheet equilibria. Plasma Phys. Control. Fusion 60(1), 014008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neukirch, T., Wilson, F., Allanson, O.: 2020, A family of Vlasov-Maxwell equilibrium distribution functions describing a transition from the Harris sheet to the force-free Harris sheet. J. Plasma Phys. 86(3), 825860302. DOI. ADS.

    Article  Google Scholar 

  • Neukirch, T., Vasko, I.Y., Artemyev, A.V., Allanson, O.: 2020, Kinetic models of tangential discontinuities in the solar wind. Astrophys. J. 891(1), 86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Newman, R., Vainchtein, D., Artemyev, A.: 2020, Solar wind transient currents: statistical properties and impact on Earth’s magnetosphere. Solar Phys. 295, 129. DOI.

    Article  ADS  Google Scholar 

  • Oliveira, D.M., Samsonov, A.A.: 2018, Geoeffectiveness of interplanetary shocks controlled by impact angles: a review. Adv. Space Res. 61(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliveira, D.M., Arel, D., Raeder, J., Zesta, E., Ngwira, C.M., Carter, B.A., Yizengaw, E., Halford, A.J., Tsurutani, B.T., Gjerloev, J.W.: 2018, Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather 16(6), 636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Omidi, N., Eastwood, J.P., Sibeck, D.G.: 2010, Foreshock bubbles and their global magnetospheric impacts. J. Geophys. Res. 115(A6), A06204. DOI. ADS.

    Article  ADS  Google Scholar 

  • Omidi, N., Sibeck, D.G.: 2007, Formation of hot flow anomalies and solitary shocks. J. Geophys. Res. 112(A1), A01203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Omidi, N., Berchem, J., Sibeck, D., Zhang, H.: 2016, Impacts of spontaneous hot flow anomalies on the magnetosheath and magnetopause. J. Geophys. Res. 121(4), 3155. DOI. ADS.

    Article  Google Scholar 

  • Osman, K.T., Matthaeus, W.H., Gosling, J.T., Greco, A., Servidio, S., Hnat, B., Chapman, S.C., Phan, T.D.: 2014, Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112(21), 215002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Palmroth, M., Hietala, H., Plaschke, F., Archer, M., Karlsson, T., Blanco-Cano, X., Sibeck, D., Kajdič, P., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L.: 2018, Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation. Ann. Geophys. 36(5), 1171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Paschmann, G., Haaland, S., Sonnerup, B., Knetter, T.: 2013, Discontinuities and Alfvénic fluctuations in the solar wind. Ann. Geophys. 31, 871. DOI. ADS.

    Article  ADS  Google Scholar 

  • Phan, T.D., Gosling, J.T., Paschmann, G., Pasma, C., Drake, J.F., Øieroset, M., Larson, D., Lin, R.P., Davis, M.S.: 2010, The dependence of magnetic reconnection on plasma \(\beta\) and magnetic shear: evidence from solar wind observations. Astrophys. J. Lett. 719(2), L199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., Lee, S.H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., Sibeck, D.: 2018, Jets downstream of collisionless shocks. Space Sci. Rev. 214, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Podesta, J.J.: 2017, The most intense current sheets in the high-speed solar wind near 1 AU. J. Geophys. Res. 122, 2795. DOI. ADS.

    Article  Google Scholar 

  • Russell, C.T., Jian, L.K., Luhmann, J.G., Zhang, T.L., Neubauer, F.M., Skoug, R.M., Blanco-Cano, X., Omidi, N., Cowee, M.M.: 2008, Mirror mode waves: messengers from the coronal heating region. Geophys. Res. Lett. 35, L15101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Šafránková, J., Němeček, Z., Přech, L., Samsonov, A.A., Koval, A., Andréeová, K.: 2007, Interaction of interplanetary shocks with the bow shock. Planet. Space Sci. 55(15), 2324. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samsonov, A.A., Sibeck, D.G., Imber, J.: 2007, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J. Geophys. Res. 112(A12), A12220. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samsonov, A.A., Sibeck, D.G., Dmitrieva, N.P., Semenov, V.S., Slivka, K.Y., Å afránkova, J., Němeček, Z.: 2018, Magnetosheath propagation time of solar wind directional discontinuities. J. Geophys. Res. 123(5), 3727. DOI. ADS.

    Article  Google Scholar 

  • Sapunova, O.V., Borodkova, N.L., Eselevich, V.G., Zastenker, G.N., Yermolaev, Y.I.: 2017, Fine structure of interplanetary shock fronts from the data of the BMSW instrument of the PLASMA-F experiment. Cosm. Res. 55, 396. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwartz, S.J., Avanov, L., Turner, D., Zhang, H., Gingell, I., Eastwood, J.P., Gershman, D.J., Johlander, A., Russell, C.T., Burch, J.L., Dorelli, J.C., Eriksson, S., Ergun, R.E., Fuselier, S.A., Giles, B.L., Goodrich, K.A., Khotyaintsev, Y.V., Lavraud, B., Lindqvist, P.-A., Oka, M., Phan, T.-D., Strangeway, R.J., Trattner, K.J., Torbert, R.B., Vaivads, A., Wei, H., Wilder, F.: 2018, Ion kinetics in a hot flow anomaly: MMS observations. Geophys. Res. Lett. 45(21), 11,520. DOI. ADS.

    Article  Google Scholar 

  • Sergeev, V.A., Sormakov, D.A., Apatenkov, S.V., Baumjohann, W., Nakamura, R., Runov, A.V., Mukai, T., Nagai, T.: 2006, Survey of large-amplitude flapping motions in the midtail current sheet. Ann. Geophys. 24, 2015. ADS.

    Article  ADS  Google Scholar 

  • Servidio, S., Greco, A., Matthaeus, W.H., Osman, K.T., Dmitruk, P.: 2011, Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. 116, 9102. DOI. ADS.

    Article  Google Scholar 

  • Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W.H., Veltri, P.: 2015, A kinetic model of plasma turbulence. J. Plasma Phys. 81(1), 325810107. DOI. ADS.

    Article  Google Scholar 

  • Sonnerup, B.U.Ö., Cahill, L.J. Jr.: 1968, Explorer 12 observations of the magnetopause current layer. J. Geophys. Res. 73, 1757. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Swisdak, M., Rogers, B.N., Drake, J.F., Shay, M.A.: 2003, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108(A5), 1218. DOI. ADS.

    Article  Google Scholar 

  • Takahashi, K., Lee, D.-H., Merkin, V.G., Lyon, J.G., Hartinger, M.D.: 2016, On the origin of the dawn–dusk asymmetry of toroidal Pc5 waves. J. Geophys. Res. 121(10), 9632. DOI. ADS.

    Article  Google Scholar 

  • Tsurutani, B.T., Ho, C.M.: 1999, A review of discontinuities and Alfvén waves in interplanetary space: Ulysses results. Rev. Geophys. 37, 517. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Rodriguez, P.: 1981, Upstream waves and particles – an overview of ISEE results. J. Geophys. Res. 86, 4317. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Ho, C.M., Neugebauer, M., Goldstein, B.E., Mok, J.S., Balogh, A., Southwood, D., Feldman, W.C.: 1995, Interplanetary discontinuities and Alfvén waves. Space Sci. Rev. 72, 205. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Guarnieri, F.o., Kamide, Y., Zhou, X., Arballo, J.K.: 2004, Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? J. Atmos. Solar-Terr. Phys. 66(2), 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. DOI. ADS.

    Article  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Verkhoglyadova, O.P., Gonzalez, W.D., Echer, E., Guarnieri, F.L.: 2011, A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 73, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Turner, D.L., Omidi, N., Sibeck, D.G., Angelopoulos, V.: 2013, First observations of foreshock bubbles upstream of Earth’s bow shock: characteristics and comparisons to HFAs. J. Geophys. Res. 118(4), 1552. DOI. ADS.

    Article  Google Scholar 

  • Urbář, J., Němeček, Z., Å afránková, J., Přech, L.: 2019, Solar wind proton deceleration in front of the terrestrial bow shock. J. Geophys. Res. 124(8), 6553. DOI. ADS.

    Article  Google Scholar 

  • Vasquez, B.J., Hollweg, J.V.: 1999, Formation of pressure-balanced structures and fast waves from nonlinear Alfvén waves. J. Geophys. Res. 104, 4681. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vasquez, B.J., Hollweg, J.V.: 2001, Evolution and dissipation of imbedded rotational discontinuities and Alfvén waves in nonuniform plasma and the resultant proton heating. J. Geophys. Res. 106, 5661. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vasquez, B.J., Abramenko, V.I., Haggerty, D.K., Smith, C.W.: 2007, Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvénic turbulence. J. Geophys. Res. 112, A11102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Viall, N.M., Borovsky, J.E.: 2020, Nine outstanding questions of solar wind physics. J. Geophys. Res. 125(7), e26005. DOI. ADS.

    Article  ADS  Google Scholar 

  • Viall, N.M., Kepko, L., Spence, H.E.: 2009, Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. J. Geophys. Res. 114, A01201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Volwerk, M., Goetz, C., Plaschke, F., Karlsson, T., Heyner, D.: 2019, On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Earth. Ann. Geophys. Disc. 2019, 1. DOI.

    Article  Google Scholar 

  • Walsh, A.P., Haaland, S., Forsyth, C., Keesee, A.M., Kissinger, J., Li, K., Runov, A., Soucek, J., Walsh, B.M., Wing, S., Taylor, M.G.G.T.: 2014, Dawn–dusk asymmetries in the coupled solar wind, magnetosphere, ionosphere system: a review. Ann. Geophys. 32(7), 705. DOI.

    Article  ADS  Google Scholar 

  • Wang, C., Gkioulidou, M., Lyons, L.R., Angelopoulos, V.: 2012, Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. 117, A08215. DOI.

    Article  ADS  Google Scholar 

  • Wang, B., Nishimura, Y., Zhang, H., Shen, X.-C., Lyons, L., Angelopoulos, V., Ebihara, Y., Weatherwax, A., Gerrard, A.J., Frey, H.U.: 2019, The 2-D structure of foreshock-driven field line resonances observed by THEMIS satellite and ground-based imager conjunctions. J. Geophys. Res. 124(8), 6792. DOI. ADS.

    Article  Google Scholar 

  • Wilson, L.B. III, Stevens, M.L., Kasper, J.C., Klein, K.G., Maruca, B.A., Bale, S.D., Bowen, T.A., Pulupa, M.P., Salem, C.S.: 2018, The statistical properties of solar wind temperature parameters near 1 au. Astrophys. J. Suppl. 236, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Kivelson, M.G., Russell, C.T., Smith, E.J.: 1981, ISEE-1, -2 and -3 observation of the interaction between an interplanetary shock and the Earth’s magnetosphere: a rapid traversal of the magnetopause. Geophys. Res. Lett. 8(8), 911. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wu, C.C., Kennel, C.F.: 1992, Structure and evolution of time-dependent intermediate shocks. Phys. Rev. Lett. 68, 56. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of NASA contract NAS5-02099 for use THEMIS and ARTEMIS data. We specifically acknowledge K.H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data (provided under the lead of the Technical University of Braunschweig and with a financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302). THEMIS and ARTEMIS data (FGM and ESA) are obtained from http://themis.ssl.berkeley.edu/. Data access and processing was done using SPEDAS V3.1; see Angelopoulos et al. (2019). A.V.A. was supported by NASA grant #80NSSC20K1788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Webster.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, L., Vainchtein, D. & Artemyev, A. Solar Wind Discontinuity Interaction with the Bow Shock: Current Density Growth and Dawn-Dusk Asymmetry. Sol Phys 296, 87 (2021). https://doi.org/10.1007/s11207-021-01824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01824-2

Keywords

Navigation