Skip to main content
Log in

A thixotropic fluid flow around two sequentially aligned spheres

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We studied the thixotropic-hydrodynamic interaction of particles resulting from a combination of external flow conditions and intrinsic thixotropy of a fluid. As a model system, a low Reynolds number Moore thixotropic fluid flow around two sequentially aligned sphere was simulated using the standard Galerkin finite element method. The drag coefficients of each sphere were used to quantitively characterize the thixotropic-hydrodynamic interaction between the two spheres. First, hydrodynamic interaction change according to the external flow condition was identified at a fixed distance. Subsequently, the parametric analysis was extended to incorporate the effect of the geometrical condition, the sphere-sphere distance parameter. This yields a conceptual map that distinguishes the thixotropic-hydrodynamic interaction into three different types: the geometric hydrodynamic interaction, combination of geometric and local thixotropic interaction, and global thixotropic-hydrodynamic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mewis and N. J. Wagner, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).

    Book  Google Scholar 

  2. C. F. Goodeve, Trans. Faraday Soc., 35, 342 (1939).

    Article  CAS  Google Scholar 

  3. F. Moore, Trans. J. Br. Ceram. Soc., 58, 470 (1959).

    CAS  Google Scholar 

  4. J. Stickel, R. J. Phillips and R. L. Powell, J. Rheol., 50, 379 (2006).

    Article  CAS  Google Scholar 

  5. J. D. Goddard, J. Non-Newtonian Fluid Mech., 14, 141 (1984).

    Article  CAS  Google Scholar 

  6. P. D. Patel and W. B. Russel, Colloids Surf., 31, 355 (1988).

    Article  CAS  Google Scholar 

  7. A. A. Potanin, J. Colloid Interface Sci., 145, 140 (1991).

    Article  CAS  Google Scholar 

  8. H. A. Barnes, J. Non-Newtonian Fluid Mech., 70, 1 (1997).

    Article  CAS  Google Scholar 

  9. J. E. López-Aguilar, M. F. Webster, H. R. Tamaddon-Jahoromi and O. Manero, Rheol. Acta, 55, 197 (2016).

    Article  Google Scholar 

  10. J. J. Derksen, Appl. Math. Model, 35, 1656 (2011).

    Article  Google Scholar 

  11. J. Kim and J. D. Park, Appl. Math. Model., 82, 848 (2020).

    Article  Google Scholar 

  12. J. E. López-Aguilar, M.F Webster, H.R. Tamaddon-Jahoromi and O. Manero, Rheol. Acta, 54, 307 (2014).

    Article  Google Scholar 

  13. L. Ouyang, Z. Wu, J. Wang, X. Qi, Q. Li, J. Wang and S. Lu, RSC Adv., 10, 19360 (2020).

    Article  CAS  Google Scholar 

  14. K. Shikinaka, N. Taki, K. Kaneda and Y. Tominaga, Chem. Comm., 53, 613 (2016).

    Article  Google Scholar 

  15. M. T. Balhoff and K. E. Thompson, Chem. Eng. Sci., 61, 698 (2006).

    Article  CAS  Google Scholar 

  16. M. T. Balhoff and K. E. Thompson, AIChE J., 50, 3034 (2004).

    Article  CAS  Google Scholar 

  17. K. H. Kim and H. N. Chang, Biotechnol. Bioeng., 28, 452 (1986).

    Article  CAS  Google Scholar 

  18. J. Engmann and A. S. Burbidge, Food Fucnt., 4, 443 (2013).

    CAS  Google Scholar 

  19. D. Quemada and R. Droz, Biorhelogy, 20, 635 (1983).

    Article  CAS  Google Scholar 

  20. R. G. de Krester and D. V Boger, Rheol. Acta, 40, 582 (2001).

    Article  Google Scholar 

  21. N. Zanna and C. Tomasini, Gels, 3, 39 (2017).

    Article  Google Scholar 

  22. S. Mortazavi-Manesh and J. M. Shaw, Energy Fuels, 28, 972 (2014).

    Article  CAS  Google Scholar 

  23. J. Happel and H. Brenner, Low Reynolds number hydrodynamics, Prentice-Hall, London (1965).

    Google Scholar 

  24. M. Stimson and G.B. Jeffrey. Proc. R. Soc. Lond. Series A, 111, 110 (1926).

    Article  Google Scholar 

  25. D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J. P. Pelteret, B. Turcksin and D. Wells, J. Numer. Math., 25, 137 (2017).

    Article  Google Scholar 

  26. C. Taylor and P. Hood, Comput. Fluids, 1, 73 (1973).

    Article  Google Scholar 

  27. A. N. Brooks and T. J. R. Hughes, Comput. Methods in Appl. Mech. Eng., 32, 199 (1982).

    Article  Google Scholar 

  28. C. Geuzaine and J. F. Remacle, Int. J. Numer. Eng., 79, 1309 (2009).

    Article  Google Scholar 

  29. Y. Saad and M. H. Schultz, SIAM J. Sci. and Stat. Comp., 7, 856 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

J.D. Park acknowledges support of the National Research Foundation of Korean (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Dong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Park, J.D. A thixotropic fluid flow around two sequentially aligned spheres. Korean J. Chem. Eng. 38, 1460–1468 (2021). https://doi.org/10.1007/s11814-021-0780-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0780-x

Keywords

Navigation