Skip to main content
Log in

A novel technique of harvesting cortical bone grafts during orthopaedic surgeries

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The harvesting and implanting of bone graft is a complicated and expensive orthopaedic procedure. This study introduces a unique designed hollow drill bit and a novel technique of rotary ultrasonic drilling of porcine bone to get a precise hole for screw insertion and can harvest cortical bone graft with the least bone debris generation. The new diamond impregnated hollow drill bit is compared with the conventional surgical drill bit with and without providing the ultrasonic vibrations. Also, variation in diamonds grit sizes (fine 70 µm, medium 155 µm, coarse 250 µm) and various process parameters like rotational speeds (500 rpm, 1500 rpm, 2500 rpm), feedrate (10 mm/min, 30 mm/min, 50 mm/min) and amplitude (4 µm, 12 µm, 20 µm) were optimised for enriched graft quality of bone. The diamond hollow tool provides a cylindrical bone graft as per the geometry of hollow bit whereas the surgical drill gives dense spiral-shaped bone debris. While providing no ultrasonic vibrations to hollow bit, segmented bone grafts were observed. The optimised parameters for a continuous uniform rod-shaped bone graft with the least graft deformity are obtained with drilling at rotational speed of 2500 rpm, feedrate of 10 mm/min, using fine (70 µm) diamond abrasives and amplitude of 4 µm. Rotary ultrasonic bone drilling is a better alternative method to reduce the bone debris formation and is capable of providing solid cylindrical rod-shaped cortical bone graft using a fine (70 µm) diamond coated hollow drill tool. This first successful trail-based in-vitro study relates the chip morphology of bone debris with the graft quality of bone obtained during the surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:1–27. https://doi.org/10.1186/1749-799X-9-18

    Article  Google Scholar 

  2. Woo S-Y, Debski RE, Zeminski J, Abramowitch SD, Chan Saw MS, Serena S, Fenwick JA (2000) Injury and repair of ligaments and tendons. Annu Rev Biomed Eng 2:83–118. https://doi.org/10.1146/annurev.bioeng.2.1.83

    Article  Google Scholar 

  3. Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA (1999) Tissue engineering : orthopedic applications. Ann Rev Biomed Eng 01:19–46. https://doi.org/10.1146/annurev.bioeng.1.1.19

    Article  Google Scholar 

  4. Malak SFF, Anderson IA (2008) Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft. Med Eng Phys 30:717–724. https://doi.org/10.1016/j.medengphy.2007.02.010

    Article  Google Scholar 

  5. Zhang B, Niroopan G, Gohal C et al (2020) Glenoid bone grafting in primary anatomic total shoulder arthroplasty : a systematic review. Should Elb. https://doi.org/10.1177/1758573220917653

    Article  Google Scholar 

  6. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater 2:224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  7. Sandhu HS, Grewal HS, Parvataneni H (1999) Bone grafting for spinal fusion. Orthopedic Clinics 30:685–698. https://doi.org/10.1016/S0030-5898(05)70120-6

    Article  Google Scholar 

  8. Baroli B (2009) From natural bone grafts to tissue engineering therapeutics : brainstorming on pharmaceutical formulative requirements and challenges. Wiley inter science 98:1317–1375. https://doi.org/10.1002/jps

  9. Pape HC, Evans A, Kobbe P (2010) Autologous bone graft : properties and techniques. J Orthop Trauma 24:36–40. https://doi.org/10.1097/BOT.0b013e3181cec4a1

    Article  Google Scholar 

  10. Ross N, Ross N, Tacconi L, Miles JB (2000) Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting. Br J Neurosurg 14:476–479. https://doi.org/10.1080/02688690050175346

    Article  Google Scholar 

  11. Galbusera F, Volkheimer D, Reitmaier S et al (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016. https://doi.org/10.1007/s00586-015-3768-6

    Article  Google Scholar 

  12. Wu ZX, Gong FT, Liu L et al (2012) A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg 132:471–476. https://doi.org/10.1007/s00402-011-1439-6

    Article  Google Scholar 

  13. Berry CHJMHPJT, Hoaglcsd F (1974) A study of the bone machining process—orthogonal cutting. J Biomech 7:131–136. https://doi.org/10.1016/0021-9290(74)90051-7

    Article  Google Scholar 

  14. Dhandapani R, Krishnan PD, Zennifer A et al (2020) Additive manufacturing of biodegradable porous orthopaedic screw. Bioactive Mater 5:458–467. https://doi.org/10.1016/j.bioactmat.2020.03.009

    Article  Google Scholar 

  15. Singh D, Babbar A, Jain V et al (2019) Synthesis, characterization, and bioactivity investigation of biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process. J Braz Soc Mech Sci Eng 41:1–13. https://doi.org/10.1007/s40430-019-1625-y

    Article  Google Scholar 

  16. Akhbar MFA, Sulong AW (2020) Surgical drill bit design and thermomechanical damage in bone drilling: a review. Ann Biomed Eng. https://doi.org/10.1007/s10439-020-02600-2

    Article  Google Scholar 

  17. Gok K, Buluc L (2015) Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications. J Braz Soc Mech Sci Eng 37:549–558. https://doi.org/10.1007/s40430-014-0186-3

    Article  Google Scholar 

  18. Singh RP, Gupta V, Pandey PM, Mridha AR (2020) Effect of drilling techniques on microcracks and pull-out strength of cortical screw fixed in human tibia: an in-vitro study. Ann Biomed Eng. https://doi.org/10.1007/s10439-020-02565-2

    Article  Google Scholar 

  19. Singh G, Jain V, Gupta D (2017) Multi-objective performance investigation of orthopaedic bone drilling using Taguchi membership function. Proc Inst Mech Eng [H] 231:1133–1139. https://doi.org/10.1177/0954411917735129

    Article  Google Scholar 

  20. Sarparast M, Ghoreishi M, Jahangirpoor T, Tahmasbi V (2020) Experimental and finite element investigation of high-speed bone drilling : evaluation of force and temperature. J Braz Soc Mech Sci Eng 42:1–9. https://doi.org/10.1007/s40430-020-02436-w

    Article  Google Scholar 

  21. Fernandes MGA, Fonseca EMM, Natal RJ (2016) Thermal analysis during bone drilling using rigid polyurethane foams: numerical and experimental methodologies. J Braz Soc Mech Sci Eng 38:1855–1863. https://doi.org/10.1007/s40430-016-0560-4

    Article  Google Scholar 

  22. Agarwal R, Jain V, Gupta V et al (2020) Effect of surface topography on pull-out strength of cortical screw after ultrasonic bone drilling: an in vitro study. J Braz Soc Mech Sci Eng 42:1–13. https://doi.org/10.1007/s40430-020-02449-5

    Article  Google Scholar 

  23. Gok K, Gok A, Kisioglu Y (2015) Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method. Int J Adv Manuf Technol 76:1437–1448. https://doi.org/10.1007/s00170-014-6327-0

    Article  Google Scholar 

  24. Sugita N, Mitsuishi M (2009) Specifications for machining the bovine cortical bone in relation to its microstructure. J Biomech 42:2826–2829. https://doi.org/10.1016/j.jbiomech.2009.08.017

    Article  Google Scholar 

  25. Plaskos C, Hodgson AJ, Cinquin P (2003) Modelling and optimization of bone-cutting forces in orthopaedic surgery. Int Conf Med Image Comput Comput Assist Interv 2878:254–261. https://doi.org/10.1007/978-3-540-39899-8_32

    Article  Google Scholar 

  26. Sugita N, Ishii K, Sui J, Terashima M (2014) Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Ann Manuf Technol 63:101–104. https://doi.org/10.1016/j.cirp.2014.03.069

    Article  Google Scholar 

  27. Liao Z, Axinte DA (2016) On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf 102:41–55. https://doi.org/10.1016/j.ijmachtools.2015.12.004

    Article  Google Scholar 

  28. Huiyu H, Chengyong W, Yue Z et al (2017) Investigating bone chip formation in craniotomy. Proc Inst Mech Eng [H] 231:959–974. https://doi.org/10.1177/0954411917727245

    Article  Google Scholar 

  29. Alam K, Mitrofanov AV, Silberschmidt VV (2009) Measurements of Surface Roughness in Conventional and Ultrasonically Assisted Bone Drilling. Am J Biomed Sci 1:312–320. https://doi.org/10.5099/aj090400312

    Article  Google Scholar 

  30. Singh G, Jain V, Gupta D, Sharma A (2018) Parametric effect of vibrational drilling on osteonecrosis and comparative histopathology study with conventional drilling of cortical bone. Proc Inst Mech Eng [H] 232:975–986. https://doi.org/10.1177/0954411918794983

    Article  Google Scholar 

  31. Gupta V, Pandey PM, Mridha AR, Gupta RK (2017) Effect of various parameters on the temperature distribution in conventional and diamond coated hollow tool bone drilling : a comparative study. Procedia Eng 184:90–98. https://doi.org/10.1016/j.proeng.2017.04.074

    Article  Google Scholar 

  32. Gupta V, Pandey PM (2016) Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling. Med Eng Phys 38:1330–1338. https://doi.org/10.1016/j.medengphy.2016.08.012

    Article  Google Scholar 

  33. Singh RP, Pandey PM, Mridha AR, Joshi T (2019) Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Accepted:0954411919889913. https://doi.org/10.1177/0954411919889913

  34. Gupta V, Singh RP, Pandey PM, Gupta R (2020) In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques. Proc Inst Mech Eng [H] 234:398–411. https://doi.org/10.1177/0954411919898301

    Article  Google Scholar 

  35. Gupta V, Pandey PM (2016) An in-vitro study of cutting force and torque during rotary ultrasonic bone drilling. Proceed Inst Mech Eng Part B: J Eng Manuf 232:1549–1560. https://doi.org/10.1177/0954405416673115

    Article  Google Scholar 

  36. Alam K, Mitrofanov AV, Silberschmidt VV (2011) Medical Engineering & Physics Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med Eng Phys 33:234–239. https://doi.org/10.1016/j.medengphy.2010.10.003

    Article  Google Scholar 

  37. Paktinat H, Amini S (2017) Ultrasonic assistance in drilling : FEM analysis and experimental approaches. Int J Adv Manuf Technol 92:2653–2665. https://doi.org/10.1007/s00170-017-0285-2

    Article  Google Scholar 

  38. Arabiun H (2020) Effects of different storage media, temperature, and time on osteoblast preservation in autogenous bone grafts: a histomorphometrical analysis. J Dentis 21(3):225

    Google Scholar 

  39. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS (2001) Finite-element analysis of aortic valve-sparing: Influence of graft shape and stiffness. IEEE Trans Biomed Eng 48:647–659. https://doi.org/10.1109/10.923783

    Article  Google Scholar 

  40. Ji Y, Xu GP, Zhang ZP et al (2010) BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering. Ann Biomed Eng 38:632–639. https://doi.org/10.1007/s10439-009-9888-6

    Article  Google Scholar 

  41. Wang Y, Cao M, Zhao X et al (2014) Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys 36:1408–1415. https://doi.org/10.1016/j.medengphy.2014.04.007

    Article  Google Scholar 

  42. Shakouri E, Sadeghi MH, Karafi MR, Maerefat M, Farzin M (2015) An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Proc Inst Mech Eng [H] 229:137–149. https://doi.org/10.1177/0954411915573064

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Ravi Gupta, Professor & Head (Unit II), Orthopaedics cum Project Director, Sports Injury Centre, Government Medical College and Hospital, Chandigarh, Sec 32B, India, for his valuable suggestions.

Funding

The present work financial supported by SRISTI MOU BET. IITD / TIET Patiala AND SRISTI, Ahmedabad, Gujarat.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors contributed equally to the work.

Corresponding author

Correspondence to Vishal Gupta.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not Required, In-vitro study has been performed on the porcine (Pig) bone. Bone samples have been taken from the local butcher shop.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Gupta, V. & Jain, V. A novel technique of harvesting cortical bone grafts during orthopaedic surgeries. J Braz. Soc. Mech. Sci. Eng. 43, 337 (2021). https://doi.org/10.1007/s40430-021-03064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03064-8

Keywords

Navigation