Skip to main content
Log in

Generation of synthetic catalog by using Markov chain Monte Carlo simulation and inverse Poisson distribution

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

A synthetic seismic catalog assists not only in reducing the uncertainties in computations of seismic hazard, but also in simulating the future seismic events, which, if modeled accordingly, provides a forecast model. The seismicity forecast provides additional time-dependent information that may complement the seismic hazard. Within this context, in an attempt to generate a synthetic catalog and simulate future seismicity at the same time, Markov chain Monte Carlo (MCMC) simulation techniques are employed. The temporal distribution of earthquakes is modeled through hidden Markov model (HMM) and periods with different inter-event time distributions are determined, which are then assigned with different states. Along with the global magnitude and spatial distribution, the inter-event time distribution for each state is used to simulate future events with magnitude, occurrence location, and time assigned accordingly. In the end, a synthetic catalog is generated which indeed is a detailed forecast as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data is available at https://drive.google.com/drive/folders/11cX4y5X9jzf6Hj2CjmG6l6yrTSsggcj_.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr, AC-19, 716–723

  • Akkar S, Cagnan Z, Yenier E, Erdogan O, Sandıkkaya MA, Gulkan P (2010) The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters. J Seismol 14:457–479

    Article  Google Scholar 

  • Alvarez EE (2005) Estimation in stationary markov renewal processes, with application to earthquake forecasting in Turkey. Methodol Comput Appl 7:119–130

    Article  Google Scholar 

  • Ambraseys NN (2002) The seismic activity of the Marmara Sea Region over the last 2000 years. B Seismol Soc Am 92:1–18

    Article  Google Scholar 

  • Assatourians K, Atkinson G (2013) EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524

    Article  Google Scholar 

  • Benali A, Peresan A, Varini E, Talbi A (2020) Modelling background seismicity components identified by nearest neighbour and stochastic declustering approaches: the case of Northeastern Italy. Stoch Env Res Risk A 34. https://doi.org/10.1007/s00477-020-01798-w

  • Can CE, Ergun G, Gokceoglu C (2014) Prediction of earthquake hazard by hidden Markov Model (around Bilecik, NW Turkey). Cent Eur J Geosci 6(3):403–414

    Google Scholar 

  • Canales MR, Baan M (2018) Monte Carlo simulations for analysis and prediction of nonstationary magnitude-frequency distributions in probabilistic seismic hazard analysis. Geoconvention, Calgary

  • Chambers DW, Baglivo JA, Ebel JE, Kafka AL (2014) Earthquake forecasting using hidden markov models. Pure Appl Geophys 169:625–639

    Article  Google Scholar 

  • Coban HK, Sayıl N (2019) Evaluation of earthquake recurrences with different distribution models in western Anatolia. J Seismol 23:1405–1422

    Article  Google Scholar 

  • Ebel JE, Chambers DW, Kafka A, Baglivo JA (2007) Non-Poissonian earthquake clustering and the hidden markov model as bases for earthquake forecasting in California. Seismol Res Lett 78(1):57–65

    Article  Google Scholar 

  • Ebel JE, Kafka A (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seism Soc Am 89(4):854–866

  • El-Isa ZH (2018) Frequency-Magnitude Distribution of Earthquakes. In: Svalova V (Eds), Earthquakes - forecast, prognosis and earthquake resistant construction. IntechOpen:87–107

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton University Press, Princeton

  • Han Q, Wang L, Xu J, Carpinteri A, Lacidogna G (2015) A robust method to estimate the b-value of the magnitude-frequency distribution of earthquakes. Chaos, Solitons Fractals 81:103–110

    Article  Google Scholar 

  • Helmstetter A, Werner MJ (2014) Adaptive smoothing of seismicity in time, space, and magnitude for time-dependent earthquake forecasts for California. B Seismol Soc Am 104(2):809–822

    Article  Google Scholar 

  • Kalafat D, Kekovalı K, Kılıc K, Guneş Y, et al. (2008) An earthquake catalogue for turkey and surrounding area (M≥3.0;1900-2008)

  • Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, KOERI (2019) http://www.koeri.boun.edu.tr/sismo/zeqdb/ Last Date of Access: November

  • Karaca H (2018) Determination of optimum kernel bandwidth for northern Marmara region, Turkey. Acta Geophys 66:633–642

    Article  Google Scholar 

  • Leptokaropoulos KM, Karakostas VG, Papadimitriou EE, Adamaki AK, Tan O, Inan S (2013) A Homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination. B Seismol Soc Am 103(5):2739–2751

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) GPS constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Ann Geofis 43:1–9

    Google Scholar 

  • Orfanogiannaki K, Karlis D (2013), Hidden Markov models in modelling time series of earthquakes, Proceedings of the 18th EYSM, Osijek, Croatia

  • Orfanogiannaki K, Karlis D, Papadopoulos G (2007) Identification of temporal patterns in the seismicity of Sumatra using Poisson hidden Markov models. Bull Geol Soc Greece 40(3):1199–1206

    Article  Google Scholar 

  • Orfanogiannaki K, Karlis D, Papadopoulos GA (2010) Identifying seismicity levels via poisson hidden markov models. Pure Appl Geophys 167:919–931

    Article  Google Scholar 

  • Papazachos BC, Papadimitriou EE, Kiratzi AA, Papaioannou CA, Karakaisis GF (1987) Probabilities of occurrence of large earthquakes in the Aegean and surrounding area during the period 1986 – 2006. Pure Appl Geophys 125(4):597–612

    Article  Google Scholar 

  • Parsons T (2008) Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: example calculations for California. J Geophys Res 113(B3). https://doi.org/10.1029/2007jb004998

  • Pavel R, Vacareanı R (2017) Evaluation of the seismic hazard for 20 cities in Romania using Monte Carlo based simulations. Earthq Eng Eng Vib 16:513–523

    Article  Google Scholar 

  • Polat O, Gok E, Yilmaz D (2008) Earthquake hazard of aegean extension region, Turkey. Turk J Earth Sci 17:593–614

    Google Scholar 

  • Reasenberg P (1985) Second-order moment of Central California seismicity, 1969-1982. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411

    Google Scholar 

  • Sayil N, Osmansahin I (2008) An investigation of seismicity for western Anatolia. Nat Hazards 44(1):51–64

    Article  Google Scholar 

  • Schorlemmer D, Gerstenberger M, Wiemer S, Jackson D, Rhoades D (2007) Earthquake likelihood model testing. Seismol Res Lett 78:17–29

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Sengor AMC, Tuysuz O, Imren C, Sakınc M, Eyidogan H et al (2005) The North Anatolian Fault: a new look. Annu Rev Earth Planet Sci 33:37–112

    Article  Google Scholar 

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291

    Article  Google Scholar 

  • Varini, E., Peresan, A., and Benali, A. (2021) Markov modulated Poisson processes for stochastic modelling of background seismicity, EGU General Assembly, online, 19–30 Apr 2021, EGU21-11036, https://doi.org/10.5194/egusphere-egu21-11036,

  • Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2012) Estimation of the expected number of earthquake occurrences based on semi-Markov models. Methodol Comput Appl Probab 14:685–703

    Article  Google Scholar 

  • Weatherhill G, Burton PW (2010) An alternative approach to probabilistic seismic hazard analysis in the Aegean Region using Monte Carlo simulation. Tectonophysics 492(1–4):253–278

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. B Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wesnousky SG (1994) The Gutenberg-Richter or characteristic earthquake distribution, which is it? B Seismol Soc Am 84:1940–1959

    Google Scholar 

  • Yazdani A, Shahpari A, Salimi MR (2012) The use of Monte-Carlo simulations in seismic hazard analysis in Tehran and surrounding areas. Int J Eng 25(2):159–165

    Article  Google Scholar 

  • Yip CF, Ng WL, Yau CY (2017) A hidden Markov model for earthquake prediction. Stoch Env Res Risk A 32:1415–1434

    Article  Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earth-quake recurrence models to probabilistic seismic hazard estimates. B Seismol Soc Am 75:939–964

    Google Scholar 

  • Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Khan MA, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18:749–772

    Article  Google Scholar 

  • Zucchini W, MacDonald IL, Langrock R (2017) Hidden markov models for time series: an introduction using R. CRC Press, Boca Raton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Karaca.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article highlights

• As one of the most crucial patterns, the temporal distribution patterns of earthquake rates has to be identified and modeled with the right methods before projecting to the future.

• If the temporal distribution pattern of earthquake rates does not follow stationary character and the Poisson distribution, then a Markov chain technique has to be introduced for the identification of the overlapping Poisson models that make up the overall temporal distribution pattern.

• The overall magnitude distribution characteristics of a region should not be accepted as valid for the entire area; hence, any simulation study must take the spatial distribution of magnitude-frequency relationship into consideration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, H. Generation of synthetic catalog by using Markov chain Monte Carlo simulation and inverse Poisson distribution. J Seismol 25, 1103–1114 (2021). https://doi.org/10.1007/s10950-021-10018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-021-10018-z

Keywords

Navigation