Skip to main content

Advertisement

Log in

Mechanical Evaluation of Solvent Casted Poly(3-hydroxybutyrate) Films Derived from the Storage Polyesters Produced by Halomonas elongata DSM 2581T

  • Brief Communication
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate) (PHB) is a natural and biodegradable polyester which represents an alternative to replace conventional plastics in the packaging field. PHB production is currently limited owing to the high production costs. Early reports point to halotolerant and halophilic bacteria as feasible candidates for cost-effective production of PHB. Therefore, this work aimed at the synthesis of PHB using the extremely halotolerant Halomonas elongata DSM 2581T in nonsterile conditions and further mechanical evaluation of generated PHB films. H. elongata produced 2.96 g/L PHB after 72 h of incubation in a nonsterile medium supplemented with 1% w/v D-glucose and 0.1% w/v yeast extract at high salinity (8% w/v NaCl). The crotonic acid assay and 1H-NMR confirmed that the extracted polyester was PHB. The 2.7-µm thick 1% w/v PHB films generated using the polyester extracted from H. elongata indicated a higher hardness (43.78 MPa), Young`s Modulus (1.28 GPa), tensile stress (9.99 MPa) and tensile strain 1.39% than those measured for the films fabricated from commercially available PHB and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Overall, this study is the first report on the mechanical evaluation of a PHB film generated from the polyester recovered from H. elongata cultured at high salinity combined with nonsterile settings. In perspective, by producing PHB films from polyesters synthesized by H. elongata under nonsterile conditions it is possible to achieve mechanical properties required for the development of eco-friendly packaging products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Rahimi A, García J (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:0046. https://doi.org/10.1038/s41570-017-0046

    Article  CAS  Google Scholar 

  2. Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, Koskella J, Velis CA, Godfrey L, Boucher J, Murphy MB et al (2020) Evaluating scenarios toward zero plastic pollution. Science 369:1455–1461. https://doi.org/10.1126/science.aba9475

    Article  CAS  PubMed  Google Scholar 

  3. Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46:6855–6871. https://doi.org/10.1039/C7CS00149E

    Article  CAS  PubMed  Google Scholar 

  4. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326. https://doi.org/10.1016/j.mib.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592. https://doi.org/10.1038/nrmicro2354

    Article  CAS  PubMed  Google Scholar 

  6. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202. https://doi.org/10.1128/JB.01723-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hernández-Núñez E, Martínez-Gutiérrez CA, López-Cortés A et al (2019) Physico-chemical characterization of poly(3-hydroxybutyrate) produced by Halomonas salina, isolated from a hypersaline microbial mat. J Polym Environ 27:1105–1111. https://doi.org/10.1007/s10924-019-01417-y

    Article  CAS  Google Scholar 

  8. Chen GQ, Chen XY, Wu FQ, Chen JC (2020) Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Adv Ind Eng Polym Res 3:1–7. https://doi.org/10.1016/j.aiepr.2019.11.001

    Article  Google Scholar 

  9. Thorbecke R, Yamamoto M, Miyahara Y, Oota M, Mizuno S, Tsuge T (2021) The gene dosage effect of carbonic anhydrase on the biosynthesis of poly (3-hydroxybutyrate) under autotrophic and mixotrophic culture conditions. Polym J 53:209–213. https://doi.org/10.1038/s41428-020-00409-3

    Article  CAS  Google Scholar 

  10. Mitra R, Xu T, Xiang H, Han J (2020) Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 19:1–30. https://doi.org/10.1186/s12934-020-01342-z

    Article  Google Scholar 

  11. Cristea A, Baricz A, Leopold N, Floare CG, Borodi G, Kacso I et al (2018) Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). J Appl Microbiol 125:1343–1357. https://doi.org/10.1111/jam.14029

    Article  CAS  PubMed  Google Scholar 

  12. Salgaonkar BB, Mani K, Braganca JM (2013) Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol 114:1347–1356. https://doi.org/10.1111/jam.14029

    Article  CAS  PubMed  Google Scholar 

  13. Kunte HJ, Lentzen G, Galinski E (2014) Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol 3:10–25. https://doi.org/10.2174/22115501113026660037

    Article  CAS  Google Scholar 

  14. Arahal DR, Ventosa A (2006). In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York

    Google Scholar 

  15. Stanley A, Murthy PSK, Vijayendra SVN (2020) Characterization of polyhydroxyalkanoate produced by Halomonas venusta KT832796. J Polym Environ 28:973–983. https://doi.org/10.1007/s10924-020-01662-6

    Article  CAS  Google Scholar 

  16. Farah S, Anderson D, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  17. Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Biores Technol 256:552–556. https://doi.org/10.1016/j.biortech.2018.02.062

    Article  CAS  Google Scholar 

  18. Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu LP et al (2017) Engineering Halomonas bluephagenesis TD01 for non -sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Biores Technol 244:534–541. https://doi.org/10.1016/j.biortech.2017.07.149

    Article  CAS  Google Scholar 

  19. Chardron S, Bruzaud S, Lignot B, Elain A, Sire O (2010) Characterization of bionanocomposites based on medium chain length polyhydroxyalkanoates synthesized by Pseudomonas oleovorans. Polym Test 29:966–971. https://doi.org/10.1016/j.polymertesting.2010.08.009

    Article  CAS  Google Scholar 

  20. Torres MG, Rodríguez JR, Vargas S, González ME, Carreón-Castro MDP, Calzada GL, Hnatchuk N (2015) Tribological and mechanical properties of poly [(R)-3-hydroxybutyric acid] grafted with vinyl compounds: Insight into possible application. Int J Poly Anal Charact 20:469–479. https://doi.org/10.1080/1023666X.2015.1036225

    Article  CAS  Google Scholar 

  21. Iwata T, Gan H, Togo A, Fukata Y (2021) Recent developments in microbial polyester fiber and polysaccharide ester derivative research. Polym J 53:221–238. https://doi.org/10.1038/s41428-020-00404-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current work was supported by grants of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project numbers PN-III-P4-ID-PCCF-2016-0016, PN-III-P4-ID-PCE-2020-1559, and from the Romanian Ministry of Research and Innovation, MCI, Core Program, project PN18-030201.

Author information

Authors and Affiliations

Authors

Contributions

CA and HLB designed the experiments; CA and AMT performed experiments and film preparation; MP, CB, CD performed mechanical measurements; CGF performed NMR analyses. AC and HLB wrote the main manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Adorján Cristea or Horia Leonard Banciu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristea, A., Pustan, M., Bîrleanu, C. et al. Mechanical Evaluation of Solvent Casted Poly(3-hydroxybutyrate) Films Derived from the Storage Polyesters Produced by Halomonas elongata DSM 2581T. J Polym Environ 30, 424–430 (2022). https://doi.org/10.1007/s10924-021-02204-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02204-4

Keywords

Navigation