Skip to main content
Log in

Quality Assessment of Artocarpus heterophyllus Log Using Nondestructive Evaluation Techniques

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Trees are vital resources to human ecology. Many trees, wooden logs and timbers lose their quality when they degrade due to fungal decay and insect attacks. In this work, stress wave method and radiography technique are the Nondestructive Evaluation (NDE) tools employed to check the presence of the defects in an Artocarpus heterophyllus wooden log. The influence of these defects, especially, the fungal decay on wood quality is studied by introducing an artificial defect and the resulting properties obtained are evaluated using stochastic approaches. A theoretical model for the distribution of the wood properties is proposed using Radon transform and the results are compared with the path analysis of the stress wave velocities in random cross-sections of the wood. Additionally, the variability of the properties for different grain angles is calculated using Hankinson equation. Further, the results are analyzed statistically using Weibull distribution and effect size to inspect the quality and invasiveness of the defects, respectively. Results show that a reasonable prediction of the properties can be made from the analytical formulation and the Weibull modulus can be used to quantify the wood quality. Finally, the values of Weibull modulus and effect size are compared and validated for the two NDE techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the supplementary information files.

Code availability

All data generated using the software codes are included in the supplementary information files.

References

  1. Maurer, H., Schubert, S.I., Bächle, F., Clauss, S., Gsell, D., Dual, J., Niemz, P.: A simple anisotropy correction procedure for acoustic wood tomography. Holzforschung 60(5), 567–573 (2006). https://doi.org/10.1515/HF.2006.094

    Article  Google Scholar 

  2. Mathewson, J.S. (1930). The air seasoning of wood (No. 1488-2016-123371)

  3. Beall, F.C., Wilcox, W.W.: Relationship of acoustic emission during radial compression to mass loss from decay. For. Prod. J. 37(4), 38–42 (1987)

    Google Scholar 

  4. Senalik, A., Beall, F.C., Reis, H.: Detection and assessment of wood decay in glulam beams using a decay rate approach. Insight-Non-Destruct. Test. Cond. Monit. 52(10), 553–560 (2010). https://doi.org/10.1784/insi.2010.52.10.553

    Article  Google Scholar 

  5. Gilbert, G.S., Ballesteros, J.O., Barrios-Rodriguez, C.A., Bonadies, E.F., Cedeño-Sánchez, M.L., Fossatti-Caballero, N.J., et al.: Use of sonic tomography to detect and quantify wood decay in living trees. Appl. Plant Sci. 4(12), 1600060 (2016). https://doi.org/10.3732/apps.1600060

    Article  Google Scholar 

  6. Michie, J.D., Gatchell, C.J., Duke, T.J.: Dynamic evaluation of timber posts for highway guardrails. Highw. Res. Rec. 343, 19–33 (1971)

    Google Scholar 

  7. Terho, M., Hallaksela, A.M.: Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki City Area. Forestry 81(2), 151–159 (2008). https://doi.org/10.1093/forestry/cpn002

    Article  Google Scholar 

  8. Kampe, A., Magel, E.: New insights into heartwood and heartwood formation. In: Fromm, J. (ed.) Cellular Aspects of Wood Formation, pp. 71–95. Springer, Berlin (2013)

    Chapter  Google Scholar 

  9. Zabel, R.A., Morrell, J.J.: Wood Microbiology: Decay and Its Prevention. Academic press, San Diego (2012)

    Google Scholar 

  10. Smith, K.T.: Compartmentalization, resource allocation, and wood quality. Curr. For. Rep. 1(1), 8–15 (2015). https://doi.org/10.1007/s40725-014-0002-4

    Article  Google Scholar 

  11. Zahner, V., Sikora, L., Pasinelli, G.: Heart rot as a key factor for cavity tree selection in the black woodpecker. For. Ecol. Manage. 271, 98–103 (2012). https://doi.org/10.1016/j.foreco.2012.01.041

    Article  Google Scholar 

  12. Kazemi-Najafi, S., Shalbafan, A., Ebrahimi, G.: Internal decay assessment in standing beech trees using ultrasonic velocity measurement. Eur. J. Forest Res. 128(4), 345–350 (2009). https://doi.org/10.1007/s10342-009-0269-3

    Article  Google Scholar 

  13. Wang, X., Ross, R.J., McClellan, M., Barbour, R.J., Erickson, J.R., Forsman, J.W., McGinnis, G.D. (2000). Strength and stiffness assessment of standing trees using a nondestructive stress wave technique. United States, Department of Agriculture, Forest Service, Forest Products Laboratory

  14. Senalik, C.A., Schueneman, G., Ross, R.J.: Ultrasonic-based nondestructive evaluation methods for wood. Nondestruct. Eval. Wood 238, 21 (2015). https://doi.org/10.2737/FPL-GTR-235

    Article  Google Scholar 

  15. Ross, R.: Using sound to evaluate standing timber. Int. For. Rev. 1, 43–44 (1999)

    Google Scholar 

  16. Carreira, M.R., Dias, A.A., de Alcântara Segundinho, P.G.: Nondestructive evaluation of Corymbia citriodora logs by means of the free transverse vibration test. J. Nondestr. Eval. 36(2), 26 (2017). https://doi.org/10.1007/s10921-017-0401-0

    Article  Google Scholar 

  17. Leong, E.C., Burcham, D.C., Fong, Y.K.: A purposeful classification of tree decay detection tools. Arboric. J. 34(2), 91–115 (2012). https://doi.org/10.1080/03071375.2012.701430

    Article  Google Scholar 

  18. Wang, X., Ross, R.J., Carter, P.: Acoustic evaluation of wood quality in standing trees. Part I. Acoustic wave behavior. Wood Fiber Sci. 39(1), 28–38 (2007)

    Google Scholar 

  19. Wang, X., Ross, R.J., Mattson, J.A., Erickson, J.R.: Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. For. Prod. J. 52(2), 79 (2002)

    Google Scholar 

  20. Feng, H., Li, G., Fu, S., Wang, X.: Tomographic image reconstruction using an interpolation method for tree decay detection. BioResources 9(2), 3248–3263 (2014)

    Google Scholar 

  21. Divós, F., Divós, P.: Resolution of stress wave based acoustic tomography. In: 14th International Symposium on Nondestructive Testing of Wood, pp. 309–314. Hannover, Germany (2005).

  22. Han, S., Yu, L., Qi, D.: Application of X-ray computed tomography to automatic wood testing. In: 2007 IEEE International Conference on Automation and Logistics, pp. 1325–1330. IEEE. https://doi.org/10.1109/ICAL.2007.4338775 (2007)

  23. Bucur, V.: Acoustics of Wood. Springer, Berlin (2006)

    Book  Google Scholar 

  24. Lindgren, L.O.: Non-destructive measurements of density and moisture content in wood using computerized tomography. Tech Lie Thesis Royal Institute, of Technology, Stockholm (in Swedish) (1988)

  25. Lindgren, O., Davis, J., Wells, P., Shadbolt, P.: Non-destructive wood density distribution measurements using computed tomography. Holz als Roh-und Werkstoff 50(7–8), 295–299 (1992). https://doi.org/10.1007/BF02615356

    Article  Google Scholar 

  26. Wei, Q., Leblon, B., La. Rocque, A.: On the use of X-ray computed tomography for determining wood properties: a review. Can. J. For. Res. 41(11), 2120–2140 (2011). https://doi.org/10.1139/x11-111

    Article  Google Scholar 

  27. Bucur, V.: Nondestructive Characterization and Imaging of Wood. Springer, Berlin (2003)

    Book  Google Scholar 

  28. Damodaran, A., Mansour, H., Lessard, L., Scavone, G., Babu, A.S.: Application of composite materials to the chenda, an Indian percussion instrument. Appl. Acoust. 88, 1–5 (2015). https://doi.org/10.1016/j.apacoust.2014.07.013

    Article  Google Scholar 

  29. Brémaud, I.: Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J. Acoust. Soc. Am. 131(1), 807–818 (2012). https://doi.org/10.1121/1.3651233

    Article  Google Scholar 

  30. Elevitch, C.R., Manner, H.I.: Artocarpus heterophyllus (jackfruit). Species Profiles Pac. Island Agrofor. 10, 1–25 (2006)

    Google Scholar 

  31. Chauhan, S.S., Entwistle, K.M., Walker, J.C.: Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung 59(4), 428–434 (2005). https://doi.org/10.1515/HF.2005.070

    Article  Google Scholar 

  32. Deans, S.R.: The Radon Transform and Some of Its Applications. Courier Corporation, North Chelmsford (2007)

    MATH  Google Scholar 

  33. Sasanpour, M.T., Taheri, A.: Determination of probabilistic distribution function of background and defect optical densities for X-ray radiography images of a steel plate. J. Nondestr. Eval. 35(4), 1–10 (2016). https://doi.org/10.1007/s10921-016-0377-1

    Article  Google Scholar 

  34. Li, G., Weng, X., Du, X., Wang, X., Feng, H.: Stress wave velocity patterns in the longitudinal–radial plane of trees for defect diagnosis. Comput. Electron. Agric. 124, 23–28 (2016). https://doi.org/10.1016/j.compag.2016.03.021

    Article  Google Scholar 

  35. Armstrong, J.P., Patterson, D.W., Sneckenberger, J.E.: Comparison of three equations for predicting stress wave velocity as a function of grain angle. Wood Fiber Sci. 23(1), 32–43 (2007)

    Google Scholar 

  36. Li, G., Wang, X., Feng, H., Wiedenbeck, J., Ross, R.J.: Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Comput. Electron. Agric. 104, 32–39 (2014). https://doi.org/10.1016/j.compag.2014.03.008

    Article  Google Scholar 

  37. Jiang, R., Murthy, D.N.P.: A study of Weibull shape parameter: properties and significance. Reliab. Eng. Syst. Saf. 96(12), 1619–1626 (2011). https://doi.org/10.1016/j.ress.2011.09.003

    Article  Google Scholar 

  38. Hall, P.L., Strutt, J.E.: Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study. Reliab. Eng. Syst. Saf. 80(3), 233–242 (2003). https://doi.org/10.1016/S0951-8320(03)00032-2

    Article  Google Scholar 

  39. Warren, P.D.: Fracture of brittle materials: effects of test method and threshold stress on the Weibull modulus. J. Eur. Ceram. Soc. 21(3), 335–342 (2001). https://doi.org/10.1016/S0955-2219(00)00183-7

    Article  Google Scholar 

  40. Cook, B.G., Cook, L., Therrien, W.J.: Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn. Disabil. Res. Pract. 33(2), 56–63 (2018). https://doi.org/10.1111/ldrp.12167

    Article  Google Scholar 

  41. Wang, X., Divos, F., Pilon, C., Brashaw, B.K., Ross, R.J., Pellerin, R.F.: Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools: a guide for use and interpretation. Gen. Tech. Rep. FPL-GTR-147. Madison: US Department of Agriculture, Forest Service, Forest Products Laboratory. https://doi.org/10.2737/FPL-GTR-147 (2004)

Download references

Acknowledgements

We are thankful to Dr. A Muthukumar and his research group at Institute of Wood Science & Technology (IWST), Bangalore for supporting this research. We also show gratitude to Dr. Suresh, Radiologist and Mr. Jafar Ali, Diagnostician at Radocs Diagnostics & Imaging, Advanced Research Center, Bangalore for helping us in conducting the experiments.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanketh Tonannavar.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 122 kb)

Supplementary file2 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonannavar, S., Shivakumar, N.D., Simha, K.R.Y. et al. Quality Assessment of Artocarpus heterophyllus Log Using Nondestructive Evaluation Techniques. J Nondestruct Eval 40, 55 (2021). https://doi.org/10.1007/s10921-021-00787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00787-5

Keywords

Navigation