Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission

Abstract

We demonstrate near-infrared (NIR) absorptive and emissive poly(p-phenylene vinylene) (PPV)-type π-conjugated polymers based on hypervalent tin-fused azobenzene (TAz) complexes. Taking advantage of the inherent narrow-energy gap of TAz complexes originating from the three-center four-electron (3c-4e) bond and nitrogen–tin (N–Sn) coordination, the synthesized polymers, TAz-PPVs, showed absorption, and emission in wavelength regions of >750 and 810 nm in diluted solution, respectively. From the experimental and theoretical investigations, the elevation of the highest occupied molecular orbital (HOMO) and the reduction of the lowest unoccupied molecular orbital (LUMO) were simultaneously shown to be caused by the extension of π-conjugation. The effective conjugation length was calculated to be n > 10 (n: degree of polymerization), and the value was comparable to conventional PPV systems. Through this research, we revealed that π-conjugated systems including hypervalent bonds were able to expand π-conjugation. According to the concept of “element blocks”, the development of heteroatom-containing narrow-energy-gap monomers should be a novel approach for the construction of new NIR-absorptive and emissive bland materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44:683–700.

    Article  CAS  PubMed  Google Scholar 

  2. Bünzli JCG, Eliseeva SV. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J Rare Earths. 2010;28:824–42.

    Article  CAS  Google Scholar 

  3. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Optical nano-agents in the second near-infrared window for biomedical applications. Chem Soc Rev. 2019;48:22–37.

    Article  CAS  PubMed  Google Scholar 

  4. Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci. 2018;9:4370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ning Y, Zhu M, Zhang JL. Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coord Chem Rev. 2019;399:213028.

    Article  CAS  Google Scholar 

  6. Li Q, Guo Y, Liu Y. Exploration of near-infrared organic photodetectors. Chem Mater. 2019;31:6359–79.

    Article  CAS  Google Scholar 

  7. Zou D, Zhang J, Cui Y, Qian G. Near-infrared-emissive metal–organic frameworks. Dalton Trans. 2019;48:6669–75.

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res. 2017;50:2529–38.

    Article  CAS  PubMed  Google Scholar 

  9. Xiang H, Cheng J, Ma X, Zhou X, Chruma JJ. Near-infrared phosphorescence: materials and applications. Chem Soc Rev. 2013;42:6128–85.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan L, Lin W, Zheng K, He L, Huang W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev. 2013;42:622–61.

    Article  CAS  PubMed  Google Scholar 

  11. Zampetti A, Minotto A, Cacialli F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv Funct Mater. 2019;29:1807623.

    Article  CAS  Google Scholar 

  12. Lu H, Mack J, Yang Y, Shen Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev. 2014;43:4778–823.

    Article  CAS  PubMed  Google Scholar 

  13. Dou L, Liu Y, Hong Z, Li G, Yang Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev. 2015;115:12633–65.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Zhang H, Wang Z, Feng L. Photothermal conjugated polymers and their biological applications in imaging and therapy. ACS Appl Polym Mater. 2020;2:4222–40.

    Article  CAS  Google Scholar 

  15. Jiang Y, Pu K. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res. 2018;51:1840–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kage Y, Kang S, Mori S, Mamada M, Adachi C, Kim D, et al. An electron-accepting aza-BODIPY-based donor–acceptor–donor architecture for bright NIR emission. Chem Eur J. 2021;27:5259–67.

    Article  CAS  PubMed  Google Scholar 

  17. Loaeza L, Corona-Sánchez R, Castro G, Romero-Ávila M, Santillan R, Maraval V, et al. Synthesis and optical properties of 1-ethyl-indol-3-yl-substituted aza-BODIPY dyes at the 1,7-positions. Tetrahedron. 2021;83:131983.

    Article  CAS  Google Scholar 

  18. Kawano Y, Ito Y, Ito S, Tanaka K, Chujo Y. π-conjugated copolymers composed of boron formazanate and their application for a wavelength converter to near-infrared light. Macromolecules. 2021;54:1934–42.

    Article  CAS  Google Scholar 

  19. Sahu K, Mondal S, Mobin SM, Kar S. Photocatalytic C–H thiocyanation of corroles: development of near-infrared (NIR)-emissive dyes. J Org Chem. 2021;86:3324–33.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, et al. Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging. Angew Chem Int Ed. 2021;60:3967–73.

    Article  CAS  Google Scholar 

  21. Grimme J, Kreyenschmidt M, Uckert F, Müllen K, Scherf U. On the conjugation length in poly(para-phenylene)-type polymers. Adv Mater. 1995;7:292–5.

    Article  CAS  Google Scholar 

  22. Rissler J. Effective conjugation length of π-conjugated systems. Chem Phys Lett. 2004;395:92–6.

    Article  CAS  Google Scholar 

  23. Hoffmann ST, Bässler H, Köhler A. What determines inhomogeneous broadening of electronic transitions in conjugated polymers? J Phys Chem B. 2010;114:17037–48.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka K, Chujo Y. New idea for narrowing an energy gap by selective perturbation of one frontier molecular orbital. Chem Lett. 2021;50:269–79.

    Article  CAS  Google Scholar 

  25. Watanabe H, Tanaka K, Chujo Y. Independently tuned frontier orbital energy levels of 1,3,4,6,9b-pentaazaphenalene derivatives by the conjugation effect. J Org Chem. 2019;84:2768–78.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe H, Ochi J, Tanaka K Chujo Y. Tuning the NIR absorption properties of 1,3,4,6,9b-pentaazaphenalene derivatives through the spatially separated frontier molecular orbitals. Eur J Org Chem. 2020:777–83.

  27. Watanabe H, Kawano Y, Tanaka K, Chujo Y. Enhancing light-absorption and luminescent properties of non-emissive 1,3,4,6,9b-pentaazaphenalene through perturbation of forbidden electronic transition by boron complexation. Asian J Org Chem. 2020;9:259–66.

    Article  CAS  Google Scholar 

  28. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  29. Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J. 2018;50:109–26.

    Article  CAS  Google Scholar 

  30. Tanaka K, Chujo Y. Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. Polym J. 2020;52:555–66.

    Article  CAS  Google Scholar 

  31. Gon M, Saotome S, Tanaka K, Chujo Y. Paintable hybrids with thermally stable dual emission composed of tetraphenylethene-integrated POSS and MEH-PPV for heat-resistant white-light luminophores. ACS Appl Mater Interfaces. 2021;13:12483–90.

    Article  CAS  PubMed  Google Scholar 

  32. Gon M, Sato K, Kato K, Tanaka K, Chujo Y. Preparation of bright-emissive hybrid materials based on light-harvesting POSS having radially integrated luminophores and commercial π-conjugated polymers. Mater Chem Front. 2019;3:314–20.

    Article  CAS  Google Scholar 

  33. Gon M, Kato K, Tanaka K, Chujo Y. Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. Mater Chem Front. 2019;3:1174–80.

    Article  CAS  Google Scholar 

  34. Ochi J, Tanaka K, Chujo Y. Recent progress in the development of solid-state luminescent o-Carboranes with stimuli responsivity. Angew Chem Int Ed. 2020;59:9841–55.

    Article  CAS  Google Scholar 

  35. Ochi J, Tanaka K, Chujo Y. Experimental proof for emission annihilation through bond elongation at the carbon–carbon bond in o-carborane with fused biphenyl-substituted compounds. Dalton Trans. 2021;50:1025–33.

    Article  CAS  PubMed  Google Scholar 

  36. Morisue M, Kusukawa T, Watase S. Dipyrrin complexes of borasiloxane silanols with adaptive hydrogen-bonded conformations in the crystal and in solution states. Eur J Inorg Chem. 2020:1885–93.

  37. Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Acc Chem Res. 2020;53:1557–67.

    Article  CAS  PubMed  Google Scholar 

  38. Nishiyama H, Zheng F, Inagi S, Fueno H, Tanaka K, Tomita I. Tellurophene-containing π-conjugated polymers with unique heteroatom–heteroatom interactions by post-element-transformation of an organotitanium polymer. Polym Chem. 2020;11:4693–8.

    Article  CAS  Google Scholar 

  39. Imoto H, Naka K. The dawn of functional organoarsenic chemistry. Chem Eur J. 2019;25:1883–94.

    Article  CAS  PubMed  Google Scholar 

  40. Tanabe M, Hagio T, Osakada K, Nakamura M, Hayashi Y, Ohshita J. Synthesis of 4,4-dihydrodithienosilole and its unexpected cyclodimerization catalyzed by Ni and Pt complexes. Organometallics. 2017;36:1974–80.

    Article  CAS  Google Scholar 

  41. Gon M, Tanaka K, Chujo Y. Discovery of functional luminescence properties based on flexible and bendable boron-fused azomethine/azobenzene complexes with O,N,O-type tridentate ligands. Chem Rec. https://doi.org/10.1002/tcr.202000156. In press.

  42. Ohtani S, Gon M, Tanaka K, Chujo Y. Construction of the luminescent donor–acceptor conjugated systems based on boron-fused azomethine acceptor. Macromolecules. 2019;52:3387–93.

    Article  CAS  Google Scholar 

  43. Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Controlling energy gaps of π-conjugated polymers by multi-fluorinated boron-fused azobenzene acceptors for highly efficient near-infrared emission. Chem Asian J. 2021;16:696–703.

    Article  CAS  PubMed  Google Scholar 

  44. Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Preparation of near-infrared emissive π-conjugated polymer films based on boron-fused azobenzene complexes with perpendicularly protruded aryl substituents. Macromol. Rapid Commun. 2021;42:2000566.

  45. Gon M, Tanaka K, Chujo Y. A highly efficient near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based on a fused azobenzene-boron complex. Angew Chem Int Ed. 2018;57:6546–51.

    Article  CAS  Google Scholar 

  46. Wakabayashi J, Gon M, Tanaka K, Chujo Y. Near-infrared absorptive and emissive Poly(p-phenylene vinylene) derivative containing azobenzene–boron complexes. Macromolecules. 2020;53:4524–32.

    Article  CAS  Google Scholar 

  47. Gon M, Wakabayashi J, Tanaka K, Chujo Y. Unique substitution effect at 5,5′-positions of fused azobenzene–boron complexes with a N=N π-conjugated system. Chem Asian J. 2019;14:1837–43.

    Article  CAS  PubMed  Google Scholar 

  48. Ohtani S, Gon M, Tanaka K, Chujo Y. A flexible, fused, azomethine–boron complex: thermochromic luminescence and thermosalient behavior in structural transitions between crystalline polymorphs. Chem Eur J. 2017;23:11827–33.

    Article  CAS  PubMed  Google Scholar 

  49. Ohtani S, Takeda Y, Gon M, Tanaka K, Chujo Y. Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. Chem Commun. 2020;56:15305–8.

    Article  CAS  Google Scholar 

  50. Ohtani S, Nakamura M, Gon M, Tanaka K, Chujo Y. Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chem Commun. 2020;56:6575–8.

    Article  CAS  Google Scholar 

  51. Ohtani S, Gon M, Tanaka K, Chujo Y. The design strategy for an aggregation- and crystallization-induced emission-active molecule based on the introduction of skeletal distortion by boron complexation with a tridentate ligand. Crystals. 2020;10:615.

    Article  CAS  Google Scholar 

  52. Liu CL, Tsai FC, Chang CC, Hsieh KH, Lin JL, Chen WC. Theoretical analysis on the geometries and electronic structures of coplanar conjugated poly(azomethine)s. Polymer. 2005;46:4950–7.

    Article  CAS  Google Scholar 

  53. Tsuji H, Nakamura E. Carbon-bridged oligo(phenylene vinylene)s: a de novo designed, flat, rigid, and stable π-conjugated system. Acc Chem Res. 2019;52:2939–49.

    Article  CAS  PubMed  Google Scholar 

  54. Meier H, Stalmach U, Kolshorn H. Effective conjugation length and UV/vis spectra of oligomers. Acta Polym. 1997;48:379–84.

    Article  CAS  Google Scholar 

  55. Panda AN, Plasser F, Aquino AJA, Burghardt I, Lischka H. Electronically excited states in poly(p-phenylenevinylene): vertical excitations and torsional potentials from high-level ab initio calculations. J Phys Chem A. 2013;117:2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardozo TM, Aquino AJA, Barbatti M, Borges I, Lischka H. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation. J Phys Chem A. 2015;119:1787–95.

    Article  CAS  PubMed  Google Scholar 

  57. Kim DY, Grey JK, Barbara PF. A detailed single molecule spectroscopy study of the vibronic states and energy transfer pathways of the conjugated polymer MEH-PPV. Synth Met. 2006;156:336–45.

    Article  CAS  Google Scholar 

  58. Padmanaban G, Ramakrishnan S. Fluorescence spectroscopic studies of solvent- and temperature-induced conformational transition in segmented poly[2-methoxy-5-(2′-ethylhexyl)oxy-1,4-phenylenevinylene] (MEHPPV). J Phys Chem B. 2004;108:14933–41.

    Article  CAS  Google Scholar 

  59. Amrutha SR, Jayakannan M. Probing the π-stacking induced molecular aggregation in π-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes. J Phys Chem B. 2008;112:1119–29.

    Article  CAS  PubMed  Google Scholar 

  60. Blayney AJ, Perepichka IF, Wudl F, Perepichka DF. Advances and challenges in the synthesis of poly(p-phenylene vinylene)-based polymers. Isr J Chem. 2014;54:674–88.

    Article  CAS  Google Scholar 

  61. Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB. Efficient light-emitting diodes based on polymers with high electron affinities. Nature. 1993;365:628–30.

    Article  CAS  Google Scholar 

  62. Lei T, Dou JH, Cao XY, Wang JY, Pei J. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V–1 s–1 under ambient conditions. J Am Chem Soc. 2013;135:12168–71.

    Article  CAS  PubMed  Google Scholar 

  63. Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ. Molecularly stretchable electronics. Chem Mater. 2014;26:3028–41.

    Article  CAS  Google Scholar 

  64. Gon M, Tanaka K, Chujo Y. Vapochromic luminescent π-conjugated systems with reversible coordination-number control of hypervalent tin(IV)-fused azobenzene complexes. Chem. Eur J. 2021;27:7561–71.

  65. Bessler KE, dos Santos JA, Deflon VM, de Souza Lemos S, Niquet E. Organotin dyes: synthesis and structural characterization of dibutyltin and dimethyltin complexes with 2, 2′-dihydroxyazobenzene. Z Anorg Allg Chem. 2004;630:742–5.

    Article  CAS  Google Scholar 

  66. Kosugi M, Sasazawa K, Shimizu Y, Migita T. REACTIONS OF ALLYLTIN COMPOUNDS III. ALLYLATION OF AROMATIC HALIDES WITH ALLYLTRIBUTYLTIN IN THE PRESENCE OF TETRAKIS(TRIPHENYLPHOSPHINE)PALLADIUM(O). Chem Lett. 1977;6:301–2.

    Article  Google Scholar 

  67. Milstein D, Stille JK. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc. 1978;100:3636–8.

    Article  CAS  Google Scholar 

  68. Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol Phys. 1970;18:145–64.

    Article  CAS  Google Scholar 

  69. Chynwat V, Frank HA. The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem Phys. 1995;194:237–44.

    Article  CAS  Google Scholar 

  70. Biczók L, Bérces T, Inoue H. Effects of Molecular structure and hydrogen bonding on the radiationless deactivation of singlet excited fluorenone derivatives. J Phys Chem A. 1999;103:3837–42.

    Article  Google Scholar 

  71. Yeo H, Tanaka K, Chujo Y. Tunable optical property between pure red luminescence and dual emission depended on the length of light-harvesting antennae in the dyads containing the cardo structure of BODIPY and oligofluorene. Macromolecules. 2016;49:8899–904.

    Article  CAS  Google Scholar 

  72. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, et al. Efficient two layer leds on a polymer blend basis. Adv Mater. 1995;7:551–4.

    Article  CAS  Google Scholar 

  73. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater. 2011;23:2367–71.

    Article  CAS  PubMed  Google Scholar 

  74. Meyers F, Heeger AJ, Brédas JL. Fine tuning of the band gap in conjugated polymers via control of block copolymer sequences. J Chem Phys. 1992;97:2750–8.

    Article  CAS  Google Scholar 

  75. Ma J, Li S, Jiang Y. A time-dependent DFT study on band gaps and effective conjugation lengths of polyacetylene, polyphenylene, polypentafulvene, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, and polythiophene. Macromolecules. 2002;35:1109–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Research Institute for Production Development, Japan (for MG) and a Grant-in-Aid for Early-Career Scientists (for MG) (JSPS KAKENHI Grant numbers 20K15334) for Scientific Research (B) (for KT), (JP17H03067), for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element Blocks (No. 2401)” (JP24102013) and for Challenging Research (Pioneering) (JP18H05356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gon, M., Tanimura, K., Yaegashi, M. et al. PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polym J 53, 1241–1249 (2021). https://doi.org/10.1038/s41428-021-00506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00506-x

This article is cited by

Search

Quick links