Skip to main content
Log in

Exponential Stability for a Thermoelastic Porous System with Microtemperatures Effects

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article, we consider a one-dimensional thermoelastic porous system with microtemperatures. Based on the energy method we show in the case of zero thermal conductivity that the dissipation given only by the microtemperatures is strong enough to produce an exponential stability irrespective of the wave speeds of the system or any other condition on the coefficients. The result of this paper is new and improves previous results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apalara, T.A.: On the stabilization of a memory-type porous thermoelastic system. Bull. Malays. Math. Sci. Soc. 43(2), 1433–1448 (2020)

    Article  MathSciNet  Google Scholar 

  2. Apalara, T.A.: On the stability of porous-elastic system with microtemperatures. J. Therm. Stresses 42(2), 265–278 (2019)

    Article  MathSciNet  Google Scholar 

  3. Apalara, T.A.: Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Appl. Math. 70(4), 363–372 (2017)

    Article  MathSciNet  Google Scholar 

  4. Apalara, T.A.: Corrigendum: exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Appl. Math. 70(4), 553–555 (2017)

    Article  MathSciNet  Google Scholar 

  5. Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469(2), 457–471 (2019)

    Article  MathSciNet  Google Scholar 

  6. Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43(1–2), 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  7. Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32(6), 652–658 (2005)

    Article  MathSciNet  Google Scholar 

  8. Nunziato, W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  MathSciNet  Google Scholar 

  9. Dridi, H., Djebabla, A.: On the stabilization of linear porous elastic materials by microtemperature effect and porous damping. Ann. Univ. Ferrara 66(1), 13–25 (2020). https://doi.org/10.1007/s11565-019-00333-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  Google Scholar 

  11. Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)

    Article  Google Scholar 

  12. Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60(1–2), 67–89 (1986)

    Article  Google Scholar 

  13. Ieşan, D.: On a theory of micromorphic elastic solids with microtemperatures. J. Therm. Stresses 24(8), 737–752 (2001)

    Article  MathSciNet  Google Scholar 

  14. Ieşan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Therm. Stresses 23(3), 199–215 (2000)

    Article  MathSciNet  Google Scholar 

  15. Lacheheb, I., Messaoudi, S.A., Zahri, M.: Asymptotic stability of porous-elastic system with thermoelasticity of type III. Arab. J. Math., (Springer) 10(1), 137–155 (2021)

    Article  MathSciNet  Google Scholar 

  16. Liu, W., Chen, D., Messaoudi, S.A.: General decay rates for one-dimensional porous-elastic system with memory: the case of non-equal wave speeds. J. Math. Anal. Appl. 482(2), 123552 (2020)

    Article  MathSciNet  Google Scholar 

  17. Magańa, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43(11–12), 3414–3427 (2006)

    Article  MathSciNet  Google Scholar 

  18. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  19. Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16(4), 487–491 (2003)

    Article  MathSciNet  Google Scholar 

  20. Saci, M., Khochemane, H.E., Djebabla, A.: On the stability of linear porous elastic materials with microtemperatures effects and frictional damping. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1829602

    Article  Google Scholar 

  21. Saci, M., Djebabla, A.: On the stability of linear porous elastic materials with microtemperatures effects. J. Therm. Stresses 43(10), 1300–1315 (2020). https://doi.org/10.1080/01495739.2020.1779629

    Article  Google Scholar 

  22. Santos, M.J.D., Feng, B., Júnior, D.S.A., Santos, M.L.: Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete Contin. Dyn. Syst., Ser. B 26(5), 2805–2828 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks very much the anonymous referee for his respectful advice and remarks to correct and improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Eddine Khochemane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khochemane, H.E. Exponential Stability for a Thermoelastic Porous System with Microtemperatures Effects. Acta Appl Math 173, 8 (2021). https://doi.org/10.1007/s10440-021-00418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00418-1

Keywords

Mathematics Subject Classification (2000)

Navigation