Skip to main content
Log in

A Robust Adaptive Rank-Reduction Method for 3D Diffraction Separation and Imaging

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Diffractions with good illumination carry valuable subwavelength information below the Rayleigh limit and can be used for high-resolution imaging of small-scale discontinuous features. As diffractions are characterized by weak energy, diffracted wavefield separation is a key step before imaging of discontinuities. The traditional multichannel singular-spectrum analysis (MSSA) for diffraction separation considers the constant rank strategy. It is challenging to estimate the appropriate rank for various data. In this study, we propose a robust adaptive rank-reduction method for 3D diffraction separation and imaging. It utilizes the low-rank characteristics of reflections in the common-offset or poststack domain based on the MSSA algorithm. The method considers the kinematic and dynamic differences of reflections and diffractions, and combines the energy intensity and smoothed curvature to accurately estimate the rank thresholds as well as the ranks of the reflections and diffractions. Three-dimensional multilayer and complex synthetic examples are used to demonstrate the feasibility of the proposed method in removing reflections and separating diffractions and achieving high-resolution imaging with diffractions, which is helpful for seismic data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bansal, R., & Imhof, M. G. (2005). Diffraction enhancement in prestack seismic data. Geophysics, 70, V73–V79.

    Article  Google Scholar 

  • Bekara, M., & van der Baan, M. (2007). Local singular value decomposition for signal enhancement of seismic data. Geophysics, 72, V59–V65.

    Article  Google Scholar 

  • Berkovitch, A., Belfer, I., Hassin, Y., & Landa, E. (2009). Diffraction imaging by multifocusing. Geophysics, 74, WCA75–WCA81.

    Article  Google Scholar 

  • Carrion, P. M. (1990). Enhanced migration of seismic data. Geophysical Prospecting, 38, 689–704.

    Article  Google Scholar 

  • Chen, Y. K., Huang, W. L., Zhang, D., & Chen, W. (2016). An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction. Computers & Geosciences, 95, 59–66.

    Article  Google Scholar 

  • Claerbout, J. F. (1992). Earth soundings analysis: processing versus inversion. Blackwell Scientific Publications Inc.

    Google Scholar 

  • Cui, H. X., Zhang, L. B., & Kang, R. Y. (2009). Research on fault diagnosis for reciprocating compressor valve using energy entropy and SVM method. Journal of Loss Prevention in the Process Industries, 22, 864–867.

    Article  Google Scholar 

  • Decker, L., Merzlikin, D., & Fomel, S. (2017). Diffraction imaging and time-migration velocity analysis using oriented velocity continuation. Geophysics, 82, U25–U35.

    Article  Google Scholar 

  • Dell, S., & Gajewski, D. (2011). Common-reflection-surface-based workflow for diffraction imaging. Geophysics, 76, S187–S195.

    Article  Google Scholar 

  • Etgen, J., Gray, S., & Zhang, Y. (2009). An overview of depth imaging in exploration geophysics. Geophysics, 74, WCA5–WCA17.

    Article  Google Scholar 

  • Fomel, S. (2002). Application of plane-wave destruction filters. Geophysics, 67, 1946–1960.

    Article  Google Scholar 

  • Fomel, S., Landa, E., & Taner, M. T. (2007). Poststack velocity analysis by separation and imaging of seismic diffractions. Geophysics, 72, U89–U94.

    Article  Google Scholar 

  • Gan, S. W., Chen, Y. K., Zu, S. H., Qu, S., & Zhong, W. (2015). Structure-oriented singular value decomposition for random noise attenuation of seismic data. Journal of Geophysics and Engineering, 12, 262–272.

    Article  Google Scholar 

  • Golub, G. H., & Loan, C. F. V. (1996). Matrix computations (3rd ed.). John Hopkins University Press.

    Google Scholar 

  • He, X. C., & Yung, N. H. C. (2008). Corner detector based on global and local curvature properties. Optical Engineering, 47, 057008.

    Article  Google Scholar 

  • Huang, J., Hu, X. G., & Geng, X. (2011). An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electric Power Systems Research, 81, 400–407.

    Article  Google Scholar 

  • Huang, W. L., Wang, R. Q., Yuan, Y., Gan, S. W., & Chen, Y. K. (2017). Signal extraction using randomized-order multichannel singular spectrum analysis. Geophysics, 82, V59–V74.

    Article  Google Scholar 

  • Kanasewich, E. R., & Phadke, S. M. (1988). Imaging discontinuities on seismic sections. Geophysics, 53, 334–345.

    Article  Google Scholar 

  • Keller, J. B. (1962). Geometrical theory of diffraction. Journal of the Optical Society of America, 52, 116–130.

    Article  Google Scholar 

  • Klem-Musatov, K. (1994). Theory of seismic diffractions. SEG.

    Book  Google Scholar 

  • Klem-Musatov, K., & Aizenberg, A. (1984). The ray method and the theory of edge waves. Geophysical Journal International, 79, 35–50.

    Article  Google Scholar 

  • Klokov, A., Baina, R., Landa, E., Thore, P., Tarrass, I. (2010) Diffraction imaging for fracture detection: Synthetic case study: 80th Annual International Meeting, SEG, Expanded Abstracts, 3354–3358.

  • Klokov, A., & Fomel, S. (2012). Separation and imaging of seismic diffractions using migrated angle gathers. Geophysics, 77, S131–S143.

    Article  Google Scholar 

  • Kunz, B. F. J. (1960). Diffraction problems in fault interpretation. Geophysical Prospecting, 8, 381–388.

    Article  Google Scholar 

  • Landa, E., Fomel, S., Reshef, M. (2008) Separation, imaging, and velocity analysis of seismic diffractions using migrated angle gathers: 78th Annual International Meeting, SEG, Expanded Abstracts, 2176–2180.

  • Landa, E., & Keydar, S. (1998). Seismic monitoring of diffraction images for detection of local heterogeneities. Geophysics, 63, 1093–1100.

    Article  Google Scholar 

  • Landa, E., Shtivelman, V., & Gelchinsky, B. (1987). A method for detection of diffracted waves on common-offset sections. Geophysical Prospecting, 35, 359–374.

    Article  Google Scholar 

  • Li, Z., & Zhang, J. (2020). Imaging 3-D faults using diffractions with modified dip-angle gathers. Geophysical Journal International, 220, 1569–1584.

    Article  Google Scholar 

  • Lin, P., Peng, S. P., Wu, R.S., Zhao, J. T., Cui, X. Q., Wu, X. M. (2019) 3D diffraction separation and imaging using an adaptive rank-reduction method: 89th Annual International Meeting, SEG, Expanded Abstracts, 4221–4225.

  • Lin, P., Peng, S. P., Zhao, J. T., & Cui, X. Q. (2020). Diffraction separation and imaging using multichannel singular-spectrum analysis. Geophysics, 85, V11–V24.

    Article  Google Scholar 

  • Lin, P., Peng, S. P., Zhao, J. T., Cui, X. Q., & Du, W. F. (2018b). Accurate diffraction imaging for detecting small-scale geologic discontinuities. Geophysics, 83, S447–S457.

    Article  Google Scholar 

  • Lin, P., Peng, S. P., Zhao, J. T., Cui, X. Q., & Wang, H. H. (2018a). L1-norm regularization and wavelet transform: an improved plane-wave destruction method. Journal of Applied Geophysics, 148, 16–22.

    Article  Google Scholar 

  • Liu, C., Song, C., & Lu, Q. (2017). Random noise de-noising and direct wave eliminating based on SVD method for ground penetrating radar signals. Journal of Applied Geophysics, 144, 125–133.

    Article  Google Scholar 

  • Liu, L., Vincent, E., Xu, J., Qin, F., & Yi, L. (2016). Imaging diffractors using wave-equation migration. Geophysics, 81, S459–S468.

    Article  Google Scholar 

  • Liu, Y., Fomel, S., & Liu, G. (2010). Nonlinear structure-enhancing filtering using plane-wave prediction. Geophysical Prospecting, 58, 415–427.

    Article  Google Scholar 

  • Lowney, B., Lokmer, I., O’Brien, G. S., Amy, L., Bean, C. J., & Igoe, M. (2020). Enhancing interpretability with diffraction imaging using plane-wave destruction aided by frequency-wavenumber f-k filtering. Interpretation, 8, 1–52.

    Article  Google Scholar 

  • Moser, T. J., & Howard, C. B. (2008). Diffraction imaging in depth. Geophysical Prospecting, 56, 627–641.

    Article  Google Scholar 

  • Oropeza, V., & Sacchi, M. (2011). Simultaneous seismic data denoising and re-construction via multichannel singular spectrum analysis. Geophysics, 76, V25–V32.

    Article  Google Scholar 

  • Rad, P. B., Schwarz, B., Gajewski, D., & Vanelle, C. (2018). Common-reflection-surface-based prestack diffraction separation and imaging. Geophysics, 83, S47–S55.

    Article  Google Scholar 

  • Reshef, M. (2007). Velocity analysis in the dip-angle domain: 69th Annual International Conference and Exhibition, EAGE, Extended Abstracts, C002.

  • Reshef, M., & Landa, E. (2009). Post-stack velocity analysis in the dip-angle domain using diffractions. Geophysical Prospecting, 57, 811–821.

    Article  Google Scholar 

  • Schwarz, B. (2019). Coherent wavefield subtraction for diffraction separation. Geophysics, 84, V157–V168.

    Article  Google Scholar 

  • Schwarz, B., & Gajewski, D. (2017). Accessing the diffracted wavefield by coherent subtraction. Geophysical Journal International, 211, 45–49.

    Article  Google Scholar 

  • Schwarz, B., & Krawczyk, C. M. (2020). Coherent diffraction imaging for enhanced fault and fracture network characterization. Solid Earth Discussions, 11, 1891–1907.

    Article  Google Scholar 

  • Schwarz, B., Vanelle, C., Gajewski, D., & Kashtan, B. (2014). Curvatures and inhomogeneities: an improved common-reflection-surface approach. Geophysics, 79, S231-240.

    Article  Google Scholar 

  • Tschannen, V., Ettrich, N., Delescluse, M., & Keuper, J. (2020). Detection of point scatterers using diffraction imaging and deep learning. Geophysical Prospecting, 68, 830–844.

    Article  Google Scholar 

  • Yang, Y., Yu, D. J., & Cheng, J. S. (2006). A roller bearing fault diagnosis method based on EMD energy entropy and ANN. Journal of Sound and Vibration, 294, 269–277.

    Article  Google Scholar 

  • Yu, C. X., Wang, Y. F., & Zhao, J. T. (2017). A seismic diffraction extraction method for the study of discontinuous geologies using a regularization algorithm. Exploration Geophysics, 48, 49–55.

    Article  Google Scholar 

  • Zhao, J. T., Peng, S. P., Du, W. F., & Li, X. T. (2016). Diffraction imaging method by Mahalanobis-based amplitude damping. Geophysics, 81, S399–S440.

    Article  Google Scholar 

  • Zhao, J. T., Yu, C. X., Peng, S. P., & Li, C. J. (2020). 3D diffraction imaging method using low-rank matrix decomposition. Geophysics, 85, S1–S10.

    Article  Google Scholar 

  • Zheng, J., Peng, S. P., & Yang, F. (2014). A novel edge detection for buried target extraction after SVD-2D wavelet processing. Journal of Applied Geophysics, 106, 106–113.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (grant no. 42022031,41874157), National Key Research and Development Program of China (grant no. 2020YFE0201300), Fundamental Research Funds for the Central Universities (grant no. 2020YQMT01), the 111 project (erant no. B18052) and Open Fund of State Key Laboratory of Coal Resources and Safe Mining (grant no. SKLCRSM19KFA10). We are grateful to the discussion with Rushan Wu and Xiaobi Xie in the WTOPI group of the University of California, Santa Cruz. We would like to thank the Peng Research Group at the CUMTB for help and partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Zhao, J., Peng, S. et al. A Robust Adaptive Rank-Reduction Method for 3D Diffraction Separation and Imaging. Pure Appl. Geophys. 178, 2917–2931 (2021). https://doi.org/10.1007/s00024-021-02778-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02778-z

Keywords

Navigation