Skip to main content

Advertisement

Log in

H5N1 Avian Flu Infection in Hubbard Broiler Chicken Can Be Prevented or Cured by Methylated Soy Protein During 42 Days Rearing

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Methylated soy protein (MSP) which is positively charged with enhanced hydrophobicity may have antiviral action. This study is verifying if MSP can act inhibit H5N1 inside an animal model. Five groups of Hubbard chicks were challenged at the 25th day of the experiment with AIV virus (H5N1; 0.1 × 105 EID50/mL); 1 group did not receive any treatment (positive control), 2 groups (protective) received treatments before and after the challenge (0.1–0.2 g/L in drinking water ad libitum), and 2 groups (curative) received them only after the challenge. The positive control recorded 100% mortality after 3–5 days of infection. Chicken receiving MSP (0.2 g/L), delayed reaching to 100% mortality to the 7th day after infection, while those receiving MSP low level (0.1 g/L) could achieve 100% survival during the whole incubation period (42 days), either as a preventive or curative approach. H5N1 virus was not detected in the tracheal and cloacal swabs of the groups receiving 0.1 g/L, opposite to the positive control. The low level of MSP (0.1 g/L) reduced the viral titer to about 1% of the positive control in the protective and curative groups after 5 days of infection, and could maintain the bird body-weight, liver and kidney function, and histopathological status within the normal values. Humoral and TLC response in the group receiving both the virus and the MSP (0.1 g/L) may refer to a possibility that MSP-weakened virus has transformed into a vaccine-like material eliciting host immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from the H5N1-infected birds 3 days after infection with 0.1 mL of inoculum containing 105 EID50/mL of H5N1 as compared to the protective group which received additionally MSP (0.1 g/L in drinking water) during the whole rearing period. The histopathological sections of the protective groups were taken at the same time as the positive control group. The tracheal mucosa of the positive control (Tm1 and Tm2) manifested clear necrosis (star) beside epithelial desquamation (curved arrow). Lung tissue (Lu1 and Lu2) of the same animals showed also necrotic changes (curved arrow) with emphysematous area (arrowhead) beside pneumonic changes (open arrows), perivascular edema (closed arrow), and hemorrhage (star). The liver sections from the positive control (Li1 and Li2) showed congestion of hepatic blood vessels (star) and fibrosis of the portal area (curved arrow) beside hyperplastic changes (arrowhead) of the bile duct. Spleen sections (Sp1 and Sp2) from the same sample manifested lymphoid depletion, represented by necrotic lymphocytes (open arrow). Heart sections (He1 and He2) from the same positive control group exhibited necrotic cardiomyocytes and replaced by chronic inflammatory cells (curved arrow). The intestine sections of the positive control (In1 and In2) showed necrotic mucosa replaced by inflammatory cells (star) beside necrotic epithelial lining intestinal glands (open arrow)

Similar content being viewed by others

Data Availability

All the data relevant to this article are available on request.

References

  1. Kandeil A, Mostafa A, El-Shesheny R, El-Taweel AN, Gomaa M, Galal H, Kayali G, Ali MA (2017) Avian influenza H5N1 vaccination efficacy in Egyptian backyard poultry. Vaccine 35(45): 6195–6201. https://doi.org/10.1016/j.vaccine.2017.09.040

  2. Hamilton-West C, Rojas H, Pinto J, Orozco J, Hervé-Claude LP, Urcelay S (2012) Characterization of backyard poultry production systems and disease risk in the central zone of Chile. Res Vet Sci 93(1):121–124. https://doi.org/10.1016/j.rvsc.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  3. Capua I, Marangon S (2006) Control of avian influenza in poultry. Emerg Infect Dis 12(9):1319. https://doi.org/10.3201/eid1209.060430

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mumford E, Bishop J, Hendrickx S, Embarek PB, Perdue M (2007) Avian influenza H5N1: risks at the human–animal interface. Food Nutr Bull 28: S357-S363. https://doi.org/10.1177/15648265070282S215

  5. Yee KS, Carpenter TE, Cardona CJ (2009) Epidemiology of H5N1 avian influenza. Comp Immunol Microbiol Infect Dis 32(4):325–340. https://doi.org/10.1016/j.cimid.2008.01.005

    Article  PubMed  Google Scholar 

  6. Neuzil KM, Ortiz JR (2016) Influenza vaccines and vaccination strategies. In: Bloom BR, Lambert P-H (eds) The Vaccine Book, 2nd edn. Academic Press, USA, pp 423–444

    Chapter  Google Scholar 

  7. Dmitriev RI, Pestov NB, Korneenko TV, Gerasimova AV, Zhao H, Modyanov NN, Kostina MB, Shakhparonov MI (2005) Tissue specificity of alternative splicing of transcripts encoding hampin, a new mouse protein homologous to the Drosophila MSL-1 Protein. Russ J Bioorganic Chem 31(4):325–331. https://doi.org/10.1007/s11171-005-0045-1

    Article  CAS  Google Scholar 

  8. Kim JK, Kayali G, Walker D, Forrest HL, Ellebedy AH, Griffin YS, Rubrum A, Bahgat MM, Kutkat MA, Ali MA, Aldridge JR (2010) Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc Natl Acad Sci USA 107(24):11044–11049. https://doi.org/10.1073/pnas.1006419107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grund C, Abdelwhab ES, Arafa AS, Ziller M, Hassan MK, Aly MM, Hafez HM, Harder TC, Beer M (2011) Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2. 1 Egyptian isolate. Vaccine 29(33): 5567–5573. https://doi.org/10.1016/j.vaccine.2011.01.006

  10. Kandeil A, El-Shesheny R, Maatouq A, Moatasim Y, Cai Z, McKenzie P, Webby R, Kayali G, Ali MA (2017) Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt. J Gen Virol 98(4):548–562. https://doi.org/10.1099/jgv.0.000657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seck BM, Squarzoni C, Litamoi J (2007) Experience in control of avian influenza in Africa. Dev Biol 130:45–52

    CAS  Google Scholar 

  12. Amen O, Vemula SV, Zhao J, Ibrahim R, Hussein A, Hewlett IK, Moussa S, Mittal SK (2015) Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt. Virus Res 210: 337–343.https://doi.org/10.1016/j.virusres.2015.09.004

  13. Tolba MK, Eskarous JK (1959) Response of some strains of Newcastle disease and fowl-plague viruses to two quinones. Arch Microbiol 34(4):325–332. https://doi.org/10.1007/BF00447094

    Article  CAS  Google Scholar 

  14. Osman A, Abbas E, Mahgoub S, Sitohy M (2016) Inhibition of Penicillium digitatum in vitro and in postharvest orange fruit by a soy protein fraction containing mainly β-conglycinin. J Gen Plant Pathol 82(6):293–301. https://doi.org/10.1007/s10327-016-0686-3

    Article  CAS  Google Scholar 

  15. Sitohy M, Mahgoub S, Osman A (2011) Controlling psychrotrophic bacteria in raw buffalo milk preserved at 4 C with esterified legume proteins. LWT 44(8): 1697–1702. https://doi.org/10.1016/j.lwt.2011.03.008

  16. Osman A, El-Didamony G, Sitohy M, Khalifa M, Enan G (2016) Soybean glycinin basic subunit inhibits methicillin resistant-vancomycin intermediate Staphylococcus aureus (MRSA-VISA) in vitro Int J Appl Res Nat Prod 9:17–26

  17. Mahgoub SA, Osman AO, Sitohy MZ (2016) Impeding Bacillus spore germination in vitro and in milk by soy glycinin during long cold storage. J Gen Appl Microbiol 62(2):52–59. https://doi.org/10.2323/jgam.62.52

    Article  CAS  PubMed  Google Scholar 

  18. Sitohy M, Chobert JM, Gaudin JC, Renac T, Haertlé T (2002) When positively charged milk proteins can bind to DNA. J Food Biochem 26(6):511–532. https://doi.org/10.1111/j.1745-4514.2002.tb00770.x

    Article  Google Scholar 

  19. Sitohy M, Chobert JM, Gaudin JC, Haertlé T (2001) Esterified milk proteins inhibit DNA replication in vitro. Int J Biol Macromol 29(4–5):259–266. https://doi.org/10.1016/s0141-8130(01)00176-3

    Article  CAS  PubMed  Google Scholar 

  20. Sitohy M, Chobert JM, Schmidt M, Gozdzicka-Jozefiak A, Haertlé T (2001) Interactions between esterified whey proteins (α-lactalbumin and β-lactoglobulin) and DNA studied by differential spectroscopy. J Protein Chem 20(8):633–640. https://doi.org/10.1023/A:1013716202650

    Article  CAS  PubMed  Google Scholar 

  21. Sitohy M, Chobert JM, Haertlé T (2001) Study of the formation of complexes between DNA and esterified dairy proteins. Int Dairy J 11(11–12):873–883. https://doi.org/10.1016/S0958-6946(01)00124-8

    Article  CAS  Google Scholar 

  22. Sitohy M, Chobert JM, Karwowska U, Gozdzicka-Jozefiak A, Haertlé T (2006) Inhibition of bacteriophage M13 replication with esterified milk proteins. J Agric Food Chem 54(11):3800–3806. https://doi.org/10.1021/jf0531757

    Article  CAS  PubMed  Google Scholar 

  23. Sitohy M, Chobert JM, Haertlé T (2005) Esterified whey proteins can protect Lactococcus lactis against bacteriophage infection. Comparison with the effect of native basic proteins and L-polylysines. J Agric Food Chem 53(9):3727–2734. https://doi.org/10.1021/jf048629z

  24. Chobert JM, Sitohy M, Billaudel S, Dalgalarrondo M, Haertlé T (2007) Anticytomegaloviral activity of esterified milk proteins and L-Polylysines. J Mol Microbiol Biotechnol 13(4):255–258. https://doi.org/10.1159/000104755

    Article  CAS  PubMed  Google Scholar 

  25. Sitohy M, Billaudel S, Haertlé T, Chobert JM (2007) Antiviral activity of esterified α-lactalbumin and β-lactoglobulin against herpes simplex virus type 1. Comparison with the effect of acyclovir and L-polylysines. J Agric Food Chem 55(25): 10214–10220. https://doi.org/10.1021/jf0724421

  26. Sitohy M, Dalgalarrondo M, Nowoczin M, Besse B, Billaudel S, Haertlé T, Chobert JM (2008) The effect of bovine whey proteins on the ability of poliovirus and Coxsackie virus to infect Vero cell cultures. Int Dairy J 18(6): 658–668. https://doi.org/10.1016/j.idairyj.2007.11.023

  27. Abdelbacki AM, Taha SH, Sitohy MZ, Abou Dawood AI, Abd-El Hamid MM, Rezk AA (2010) Inhibition of tomato yellow leaf curl virus (TYLCV) using whey proteins. Virol J 7:26. https://doi.org/10.1186/1743-422X-7-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sitohy M, Besse B, Billaudel S, Haertlé T, Chobert JM (2010) Antiviral action of methylated β-lactoglobulin on the human influenza virus A subtype H3N2. Probiotics Antimicrob Proteins 2(2):104–111. https://doi.org/10.1007/s12602-010-9036-5

    Article  CAS  PubMed  Google Scholar 

  29. Sitohy M, Scanu M, Besse B, Mollat C, Billaudel S, Haertlé T, Chobert JM (2010) Influenza virus A subtype H1N1 is inhibited by methylated [beta]-lactoglobulin. J Dairy Res 77(4):411–418. https://doi.org/10.1017/S0022029910000592

    Article  CAS  PubMed  Google Scholar 

  30. Taha SH, Mehrez MA, Sitohy MZ, Abou Dawood AG, Abd-El Hamid MM, Kilany WH (2010) Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1). Virol J 7:330. https://doi.org/10.1186/1743-422X-7-330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sitohy M, Osman A (2010) Antimicrobial activity of native and esterified legume proteins against Gram-negative and Gram-positive bacteria. Food Chem 120(1):66–73. https://doi.org/10.1016/j.foodchem.2009.09.071

    Article  CAS  Google Scholar 

  32. Sitohy M, Chobert JM, Haertlé T (2001) Simplified short-time method for the esterification of milk proteins. Milchwissenschaft 56(3):127–131

    CAS  Google Scholar 

  33. Osman A, Mahgoub S, El-Masry R, Al-Gaby A, Sitohy M (2014) Extending the technological validity of R aw Buffalo Milk at room temperature by esterified legume proteins. J Food Process Preserv 38(1):223–231. https://doi.org/10.1111/j.1745-4549.2012.00768.x

    Article  CAS  Google Scholar 

  34. Bertrand-Harb C, Chobert JM, Dufour E, Haertlé T (1991) Esterification of food proteins: Characterization of the derivatives by a colorimetric method and by electrophoresis. Sci Aliments 11(4):641–652

    CAS  Google Scholar 

  35. Sitohy M, Mahgoub S, Osman A, El-Masry R, Al-Gaby A (2013) Extent and mode of action of cationic legume proteins against Listeria monocytogenes and Salmonella Enteritidis. Probiotics Antimicrob Proteins 5(3):195–205. https://doi.org/10.1007/s12602-013-9134-2

    Article  CAS  PubMed  Google Scholar 

  36. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  37. Taha MM, El-Ebiary EA, Soliman SM, Ali AM, Omar LM, Awad M, Farouk H, Nassif SA (2009) Comparative immunological studies on avian influenza live fowl pox vector H5 subtype and inactivated avian influenza H5N1 vaccines. Glob Vet 3(5):390–394

    Google Scholar 

  38. Beard C (1989) Serologic procedures. A laboratory manual for the isolation and identification of avian pathogens, 3rd ed. HG Purchase, LH Arp, CH Domermuth, and JE Pearson, eds. American Association of Avian Pathologists, Kennett Square, PA p. 192–200

  39. Villegas P (1998) Titration of biological suspensions. In: Swayne, DE, Glisson JR, Jackwood MW, Pearson JE, Reed WM (eds) Laboratory Manual for the Isolation and Identification of Avian Pathogens, 4th edn. International Book Distribution Co.in association with American Association of Avian Pathologists USA, pp 248–254

  40. Buttarello M, Plebani M (2008) A american association of avian pathologistsutomated blood cell counts: state of the art. Am J Clin Pathol 130(1): 104–116. https://doi.org/10.1309/EK3C7CTDKNVPXVTN

  41. Salvaggio A, Periti M, Miano L, Tavanelli M, Marzorati D (1991) Body mass index and liver enzyme activity in serum. Clin Chem 37(5):720–723. https://doi.org/10.1093/clinchem/37.5.720

    Article  CAS  PubMed  Google Scholar 

  42. Owen JA, Iggo B, Scandrett FJ (1954) Stewart CP (1954) The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem J 58(3):426–437. https://doi.org/10.1042/bj0580426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liddle L, Seegmiller J, Laster L (1959) The enzymatic spectrophotometric method for determination of uric acid. J Lab Clin Med 54(6):903–913

    CAS  PubMed  Google Scholar 

  44. Löndt BZ, Nunez A, Banks J, Nili H, Johnson LK, Alexander DJ (2008) Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally. Avian Pathol 37(6):619–627. https://doi.org/10.1080/03079450802499126

    Article  CAS  PubMed  Google Scholar 

  45. IBM Corp N (2010) IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp

  46. Dean A, Sullivan KM, Soe MM (2013) OpenEpi: open source epidemiologic statistics for public health, version 2.3.1

  47. Rumpf H (1990) The characteristics of systems and their changes of state disperse. In: Rumpf H (ed) Particle Technology, Chapman and Hall; Springer: Berlin/Heidelberg, Germany, pp. 8–54

  48. Osman A, Mahgoub S, Sitohy M (2014) Hindering milk quality storage deterioration by mild thermization combined with methylated chickpea protein. Int Food Res J 21(2):693–701

    CAS  Google Scholar 

  49. Mahgoub SA, Sitohy MZ, Osman AO (2013) Counteracting recontamination of pasteurized milk by methylated soybean protein. Food Bioprocess Tech 6(1):101–109. https://doi.org/10.1007/s11947-011-0653-0

    Article  CAS  Google Scholar 

  50. Abdel-Shafi S, Osman A, Enan G, El-Nemer M, Sitohy M (2016) Antibacterial activity of methylated egg white proteins against pathogenic G+ and G− bacteria matching antibiotics. Springerplus 5(1):1–3. https://doi.org/10.1186/s40064-016-2625-3

    Article  Google Scholar 

  51. Mahgoub S, Osman A, Sitohy M (2011) Inhibition of growth of pathogenic bacteria in raw milk by legume protein esters. J Food Prot 74(9):1475–1481. https://doi.org/10.4315/0362-028X.JFP-11-065

    Article  CAS  PubMed  Google Scholar 

  52. Sitohy M, Osman A (2018) Bioactive compounds in soybean proteins and its applications in food systems. In: Negm AM, Abu-hashim M (eds) Sustainability of Agricultural Environment in Egypt: Part I. Springer. p. 147–160. https://doi.org/10.1007/698_2018_246

  53. Sitohy M, Osman A, Gharib A, Chobert JM, Haertlé T (2013) Preliminary assessment of potential toxicity of methylated soybean protein and methylated β-lactoglobulin in male Wistar rats. Food Chem Toxicol 59:618–625. https://doi.org/10.1016/j.fct.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  54. Cheng S, Zhao H, Xu Y, Yang Y, Lv X, Wu P, Li X (2014) Inhibition of influenza virus infection with chitosan–sialyloligosaccharides ionic complex. Carbohydr Polym 107:132–137. https://doi.org/10.1016/j.carbpol.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Li M, Xu R, Wang S, Zhang Y, Zhang L, Zhou D, Xiao S (2019) Synthesis, structure activity relationship and in vitro anti-influenza virus activity of novel polyphenol-pentacyclic triterpene conjugates. Eur J Med Chem 163:560–568. https://doi.org/10.1016/j.ejmech.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  56. Arafat N, Eladl AH, Marghani BH, Saif MA, El-Shafei RA (2018) Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens. Vet Microbiol 219:8–16. https://doi.org/10.1016/j.vetmic.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  57. Osman A, Bin-Jumah M, Abd El-Hack ME, Elaraby G, Swelum AA, Taha AE, Sitohy M, Allam AA, Ashour EA (2020) Dietary supplementation of soybean glycinin can alter the growth, carcass traits, blood biochemical indices, and meat quality of broilers. Poult Sci 99(2):820–828. https://doi.org/10.1016/j.psj.2019.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Srinivasan S, Loganathan S, Wankhar W, Rathinasamy S, Rajan R (2016) Stress effect on humoral and cell mediated immune response: indispensable part of corticosterone and cytokine in neutrophil function. Trials Vaccinol 5:61–70. https://doi.org/10.1016/j.trivac.2016.04.002

    Article  Google Scholar 

  59. Omar A, Amer S, Mohamed W, Osman A, Sitohy M (2018) Impact of single or co-dietary inclusion of native or methylated soy protein isolate on growth performance, intestinal histology and immune status of broiler chickens. Adv Anim Vet Sci 6(10): 395–405. https://doi.org/10.17582/journal.aavs/2018/6.10.395.405

  60. Askonas B, McMichael A, Webster R (1982) The immune response to influenza viruses and the problem of protection against infection. Basic and applied influenza research. CRC Press, Boca Raton, FL

    Google Scholar 

  61. Potter C, Oxford J (1979) Determinants of immunity to influenza infection in man. Br Med Bull 35(1):69–75. https://doi.org/10.1093/oxfordjournals.bmb.a071545

    Article  CAS  PubMed  Google Scholar 

  62. Bodewes R, Kreijtz JH, van Amerongen G, Geelhoed-Mieras MM, Verburgh RJ, Heldens JG, Bedwell J, van den Brand JM, Kuiken T, van Baalen CA, Fouchier RA (2010) A single immunization with CoVaccine HT-adjuvanted H5N1 influenza virus vaccine induces protective cellular and humoral immune responses in ferrets. J Virol 84(16):7943–7952. https://doi.org/10.1128/JVI.00549-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amer SA, Ahmed SA, Ibrahim RE, Al-Gabri NA, Osman A, Sitohy M (2020) Impact of partial substitution of fish meal by methylated soy protein isolates on the nutritional, immunological, and health aspects of Nile tilapia. Oreochromis niloticus fingerlings Aquaculture 518:734871. https://doi.org/10.1016/j.aquaculture.2019.734871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Sitohy.

Ethics declarations

Ethics Approval

The design and procedures of the biological experiment got the approval of the Institutional Animal Care and Use Committee of Zagazig University (ZU-IACUC) under the reference number (ZU-IACUC/2/F/8/2018) and complied precisely to the ethical standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitohy, M., Osman, A., El-Deeb, S. et al. H5N1 Avian Flu Infection in Hubbard Broiler Chicken Can Be Prevented or Cured by Methylated Soy Protein During 42 Days Rearing. Probiotics & Antimicro. Prot. 14, 449–463 (2022). https://doi.org/10.1007/s12602-021-09807-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09807-2

Keywords

Navigation