Skip to main content
Log in

Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P M Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  2. H Hellmann, J. Chem. Phys. 3, 61 (1935)

    Article  ADS  Google Scholar 

  3. A Kratzer, Z. Phys. 3, 28 (1920)

    Google Scholar 

  4. N Rosen and P M Morse, Phys. Rev. 95, 44 (1933)

    Google Scholar 

  5. M F Manning and N Rosen, Phys. Rev. 44, 953 (1933)

    Google Scholar 

  6. G Poschl and E Teller, Z. Phys. 83, 143 (1933)

    Article  ADS  Google Scholar 

  7. A N Ikot, U S Okorie, R Sever and G J Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  8. C Eckart, Phys. Rev. 35, 1303 (1930)

    Article  ADS  Google Scholar 

  9. C S Jia, P Guo and X L Peng, J. Phys. A 39, 7737 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. M K Bahar and F Yasuk, Chin. Phys. B 22, 010301 (2013)

    Article  ADS  Google Scholar 

  11. J Stanek, Cent. Eur. J. Phys. 9, 1503 (2011)

    Google Scholar 

  12. X Y Liu, G F Wei and C Y Long, Int. J. Theor. Phys. 48, 463 (2009)

    Article  Google Scholar 

  13. M C Zhang and G Q Huang-Fu, Phys. Scr. 82, 065012 (2010)

    Article  ADS  Google Scholar 

  14. F Taskin and G Kocak, Chin. Phys. B 19, 090314 (2010)

    Article  ADS  Google Scholar 

  15. G F Wei, C Y Long and S H Dong, Phys. Lett. A 378, 2592 (2008)

    Article  ADS  Google Scholar 

  16. S M Ikhdair and R Sever, Ann. Phys. (Berlin) 17, 897 (2008)

    Article  ADS  Google Scholar 

  17. L H Zhang, X P Li and C S Jia, Phys. Lett. A 372, 2201 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. O A Awoga, A N Ikot and J B Emah, Rev. Mex. Fis. 59, 229 (2013)

    Google Scholar 

  19. C A Onate, M C Onyeaju, A N Ikot, J O A Idiodi and J O Ojonubah, J. Kor. Phys. Soc. 70, 339 (2017)

    Article  ADS  Google Scholar 

  20. M C Zhang, Chin. Phys. Lett. 30, 110301 (2013)

    Article  ADS  Google Scholar 

  21. J J Pena, G Ovando and J Morales, J. Phys. Conf. Ser. 574, 012089 (2015)

    Article  Google Scholar 

  22. H Hassanabadi, B H Yazarloo, A N Ikot, N Salehi and S Zarrinkamr, Ind. J. Phys. 87, 1219 (2013)

    Article  Google Scholar 

  23. H Hassanabadi, B H Yazarloo and S Zarrinkamar, Afr. Rev. Phys. 7, 0034 (2012)

    Google Scholar 

  24. S Sargolzaeipor, H Hassanabadi and W S Chung, Eur. Phys. J. Plus 133, 5 (2018)

    Article  Google Scholar 

  25. S Sargolzaeipor, H Hassanabadi and W S Chung, Mod. Phys. Lett. A 33, 1850060 (2018)

    Article  ADS  Google Scholar 

  26. S H Dong, W C Qiang, G H Sun and V B Bezerra, J. Phys. A 40, 10535 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. B J Falaye, Cent. Eur. J. Phys. 10, 960 (2012)

    Google Scholar 

  28. A S Resita, Chin. Phys. B 25, 010301 (2016)

    Article  ADS  Google Scholar 

  29. A P Zhang, W C Qiang and Y W Ling, Chin. Phys. Lett. 26, 100302 (2009)

    Article  ADS  Google Scholar 

  30. Y F Diao, L Z Yi, T Chen and C S Jia, Mod. Phys. Lett. B 23, 2269 (2009)

    Article  ADS  Google Scholar 

  31. J Gao and M C Zhang, Chin. Phys. Lett. 33, 010303 (2016)

    Article  ADS  Google Scholar 

  32. C Y Chen, D S Sun and F L Lu, J. Phys. A 41, 035302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. S H Dong, M Lozada-Cassou, J Yu, F J Angeles and A L Rivera, Int. J. Quant. Chem. 107, 366 (2007)

    Article  ADS  Google Scholar 

  34. S H Dong and M Cruz-Irisson, J. Math. Chem. 50, 881 (2012)

    Article  MathSciNet  Google Scholar 

  35. C S Jia, L H Zhang and C W Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  36. X Q Song, C W Wang and C S Jia, Chem. Phys. Lett. 673, 50 (2017)

    Article  ADS  Google Scholar 

  37. C S Jia, C W Wang, L H Zhang, X L Peng, R Zeng and X T You, Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  38. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha, J. Mol. Mod. 24, 289 (2018)

    Article  Google Scholar 

  39. C A Onate, M C Onyeaju, U S Okorie and A N Ikot, Results Phys. 16, 102959 (2020)

    Article  Google Scholar 

  40. C O Edet, U S Okorie, G Osobonye, U S Okorie, G J Rampho and R Server, J. Math. Chem. 58, 989 (2020)

    Article  MathSciNet  Google Scholar 

  41. U S Okorie, A N Ikot, E O Chukwuocha, M C Onyeaju, P O Amadi, M J Sithole and G J Rampho, Int. J. Thermophys. 41, 91 (2020)

    Article  ADS  Google Scholar 

  42. A Boumali, J. Math. Chem. 56, 1656 (2018)

    Article  MathSciNet  Google Scholar 

  43. G Arfken, Mathematical methods for physicists, 3rd edn (Academic Press, Orlando, 1985) pp. 327–338

    MATH  Google Scholar 

  44. K Chabi and A Boumali, Rev. Mex. Fis. 66, 110 (2020)

    Article  Google Scholar 

  45. A N Ikot, W Azogor, U S Okorie, F E Bazuaye, M C Onyeaju, C A Onate and E O Chukwuocha, Ind. J. Phys. 93, 1171 (2019)

    Article  Google Scholar 

  46. C O Edet, U S Okorie, G Osobonye, A N Ikot, G J Rampho and R Sever, J. Math. Chem. 58, 989 (2020)

    Article  MathSciNet  Google Scholar 

  47. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha, Rev. Mex. Fis. 64, 6 (2019)

    Google Scholar 

  48. U S Okorie, A N Ikot, E O Chukwuocha and G J Rampho, Results Phys. 17, 103078 (2020)

    Article  Google Scholar 

  49. G Valencia-Ortega and L A Arias-Hernandez, Int. J. Quant. Chem. 118, e25589 (2018)

    Article  Google Scholar 

  50. D J Griffiths, Introduction to quantum mechanics (Prentice Hall, Upper Saddle River, New Jersey, 1995) 07458

    Google Scholar 

  51. K J Oyewumi, O J Oluwadare, K D Sen and O A Babalola, J. Math. Chem. 51, 976 (2013)

    Article  MathSciNet  Google Scholar 

  52. M Servatkhah, R Khordad and A Ghanbari, Int. J. Thermophys. 41, 37 (2020)

    Article  ADS  Google Scholar 

  53. R Horchani and H Jelassi, Chem. Phys. 532, 110692 (2020)

    Article  Google Scholar 

  54. R Khordad and A Ghanbari, J. Low Temp. Phys. 199, 1198 (2020)

    Article  ADS  Google Scholar 

  55. W Greiner, L Neise, H Stocker and D Rischke, Thermodynamics and statistical mechanics (Springer, New York, 1995)

    MATH  Google Scholar 

  56. A N Ikot, E O Chukwuocha, M C Onyeaju, C A Onate, B I Ita and M E Udoh, Pramana – J. Phys. 90: 22 (2018)

    Google Scholar 

  57. X Y Chen, J Li and C S Jia, ACS Omega 4, 16121 (2019)

    Article  Google Scholar 

  58. J Wang, C S Jia, C J Li, X L Peng, L H Zhang and J Y Liu, ACS Omega 4, 19193 (2019)

    Article  Google Scholar 

  59. C S Jia, Y T Wang, L S Wei, C W Wang, X L Peng and L H Zhang, ACS Omega 4, 20000 (2019)

    Article  Google Scholar 

  60. R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang, Chem. Phys. Lett. 726, 83 (2019)

    Article  ADS  Google Scholar 

  61. B Tang, Y T Wang, W L Peng, L H Zhang and C S Jia, J. Mol. Struct. 1199, 126958 (2020)

    Article  Google Scholar 

  62. M Buchowiechi, Mol. Phys. 117, 1640 (2019)

    Article  ADS  Google Scholar 

  63. R Khordad, A Avazpour and A Ghanbari, Chem. Phys. 517, 30 (2019)

    Article  Google Scholar 

  64. A Ghanbari and R Khordad, Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

  65. H Ciftci, R L Hall and N Saad, J. Phys. A 36, 11807 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  66. H Ciftci, R L Hall and N Saad, Phys. Rev. A 72, 022101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  67. H Ciftci, R L Hall and N Saad, J. Phys. A 38, 1147 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U S Okorie.

Appendix A

Appendix A

1.1 A.1 Review of the asymptotic iteration method (AIM)

The AIM was proposed by Ciftci et al [65] to solve the homogeneous linear second-order differential equation of the form [66]

$$\begin{aligned} {{y}'}'(x)=\lambda _{0} (x){y}'(x)+s_{0} \left( x \right) y(x), \end{aligned}$$
(A.1)

where \(\lambda _{0} \left( x \right) \ne 0\) and the prime denotes the derivative with respect to x. The functions, \(s_{0} \left( x \right) \) and \(\lambda _{0} \left( x \right) \) must be sufficiently differentiable. Differentiating eq. (A.1) with respect to x, we obtain

$$\begin{aligned} {y}'''\left( x \right) =\lambda _{1} \left( x \right) {y}'\left( x \right) +s_{1} \left( x \right) y\left( x \right) ,\quad \end{aligned}$$
(A.2)

where

$$\begin{aligned} \lambda _{1} \left( x \right)= & {} \lambda _{0}^{\prime }\left( x \right) +\lambda _{0}^{2} \left( x \right) +s_{0} \left( x \right) , \nonumber \\ s_{1} \left( x \right)= & {} s_{0}^{\prime }\left( x \right) +s_{0} \left( x \right) \lambda _{0} \left( x \right) . \end{aligned}$$
(A.3)

Taking the second derivative of eq. (A.1) yields

$$\begin{aligned} {{y}^{\prime \prime \prime \prime }} \left( x \right) =\lambda _{2} \left( x \right) {y}'\left( x \right) +s_{2} \left( x \right) y\left( x \right) ,\quad \end{aligned}$$
(A.4)

where

$$\begin{aligned} \lambda _{2} \left( x \right)= & {} \lambda _{1}^{\prime }\left( x \right) +\lambda _{0} \left( x \right) \lambda _{1} \left( x \right) +s_{1} \left( x \right) , \nonumber \\ s_{2} \left( x \right)= & {} s_{1}^{\prime }\left( x \right) +s_{0} \left( x \right) \lambda _{1} \left( x \right) . \end{aligned}$$
(A.5)

Again, by taking the \(\left( {k+1} \right) \mathrm{th}\) and \(\left( {k+2} \right) \mathrm{th}\)-order derivative of eq. (A.1) for \(k=1,2,3...\), we obtain the following differential equations:

$$\begin{aligned} y^{\left( {k+1} \right) }\left( x \right)= & {} \lambda _{k-1} \left( x \right) {y}'\left( x \right) +s_{k-1} \left( x \right) y\left( x \right) , \nonumber \\ y^{\left( {k+2} \right) }\left( x \right)= & {} \lambda _{k} \left( x \right) {y}'\left( x \right) +s_{k} \left( x \right) y\left( x \right) , \end{aligned}$$
(A.6)

where

$$\begin{aligned}&\lambda _{k-1} \left( x \right) ={\lambda }'_{k-2} \left( x \right) +\lambda _{0} \left( x \right) \lambda _{k-2} \left( x \right) +s_{k-2} \left( x \right) , \nonumber \\&s_{k-1} \left( x \right) =s_{0} \left( x \right) \lambda _{k-2} \left( x \right) +{s}'_{k-2} \left( x \right) , \nonumber \\&\lambda _{k} \left( x \right) ={\lambda }'_{k-1} \left( x \right) +\lambda _{0} \left( x \right) \lambda _{k-1} \left( x \right) +s_{k-1} \left( x \right) , \nonumber \\&s_{k} \left( x \right) =s_{0} \left( x \right) \lambda _{k-1} \left( x \right) +{s}'_{k-1} \left( x \right) . \end{aligned}$$
(A.7)

Solving eq. (A.6), we obtain the following relation:

$$\begin{aligned} \frac{y^{\left( {k+2} \right) }\left( x \right) }{y^{\left( {k+1} \right) }\left( x \right) }=\frac{\lambda _{k} \left( x \right) \left[ {{y}'\left( x \right) +\frac{s_{k} \left( x \right) }{\lambda _{k} \left( x \right) }y\left( x \right) } \right] }{\lambda _{k-1} \left( x \right) \left[ {{y}'\left( x \right) +\frac{s_{k-1} \left( x \right) }{\lambda _{k-1} \left( x \right) }y\left( x \right) } \right] }. \end{aligned}$$
(A.8)

For sufficiently large values of k, \(\alpha \left( x \right) \) values are obtained as

$$\begin{aligned} \frac{s_{k} \left( x \right) }{\lambda _{k} \left( x \right) }=\frac{s_{k-1} \left( x \right) }{\lambda _{k-1} \left( x \right) }=\alpha \left( x \right) . \end{aligned}$$
(A.9)

This method consists of converting the Schrödinger-like equation into the form of eq. (A.1) for a given potential model. The corresponding energy eigenvalues are calculated by means of the quantisation condition [67]

$$\begin{aligned} \delta _{k} \left( x \right) {=}\,s_{k} \left( x \right) \lambda _{k-1} \left( x \right) {-}\lambda _{k} \left( x \right) s_{k-1} \left( x \right) ,k{=}1,2,3....\nonumber \\ \end{aligned}$$
(A.10)

The general solution of eq. (A.1) is obtained from eq. (A.8) as

$$\begin{aligned}&y\left( x \right) =\exp \left( {-\int ^{x} \alpha \left( {x_{1} } \right) \mathrm{d}x_{1} } \right) \nonumber \\&\quad \times \left[ \!{C_{2}{+}C_{1}\! \int ^{x} \exp \left( {\int ^{x} \left[ {\lambda _{0} \left( {x_{2} } \right) +2\alpha \left( {x_{2} } \right) } \right] \mathrm{d}x_{2} } \right) \mathrm{d}x_{1} }\!\right] , \end{aligned}$$
(A.11)

where \(C_{1}\) and \(C_{2}\) are integration constants. Also, the eigenfunction can be obtained by transforming the Schrödinger-like equation of the form

$$\begin{aligned} {y}''\left( x \right)= & {} 2\left( {\frac{ax^{N+1}}{1-bx^{N+2}}-\frac{t+1}{x}} \right) {y}'\left( x \right) \nonumber \\&-\frac{Wx^{N}}{1-bx^{N+2}}y\left( x \right) . \end{aligned}$$
(A.12)

The exact solutions for eq. (A.12) is given by

$$\begin{aligned} y\left( x \right)= & {} \left( {-1} \right) ^{2}C\left( {N+2} \right) \left( \sigma \right) _{n} {}_{2} F_{1}\nonumber \\&\left( {-n,\rho +n;\sigma ;bx^{N+2}} \right) , \end{aligned}$$
(A.13)

where

$$\begin{aligned}&\left( \sigma \right) _{n}=\frac{\Gamma \left( {\sigma +n} \right) }{\sigma },\sigma =\frac{2t+N+3}{N+2},\nonumber \\&\rho =\frac{\left( {2t+1} \right) b+2a}{\left( {N+2} \right) b}. \end{aligned}$$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osobonye, G.T., Adekanmbi, M., Ikot, A.N. et al. Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula. Pramana - J Phys 95, 98 (2021). https://doi.org/10.1007/s12043-021-02122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02122-z

Keywords

PACS Nos

Navigation