Skip to main content
Log in

Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Walnut is a popular nut tree species and usually suffers from drought stress. However, little information is available on the mechanism of walnut responding to drought stress, resulting in lack of basic understanding for its resistance. In order to excavate more functional genes that can respond to stressors, and enrich the theoretical basis for walnut resistance, in this study, 5 MYB genes with complete ORFs were identified from J. regia and the basic bio-information as well as expression patterns in different tissues and response to drought and ABA stresses were confirmed using qRT-PCR assay. The results showed that 2 JrMYB genes belong to R1-MYB subfamily and 3 JrMYBs belong to R2R3-MYB, encoding the proteins from 212 to 362 aa in length. The phylogenetic analysis categorized proteins of 5 JrMYBs and 40 Arabidopsis AtMYBs into 10 subgroups. JrMYBs in the same subgroup exhibited significant similarities in the composition of conserved domains and motifs in amino acid sequences and exon/intron organization in DNA sequences. The results of qRT-PCR analysis revealed that JrMYB genes diversely expressed in various tissues. Moreover, the expression values of JrMYBs were upregulated or downregulated significantly under drought and ABA stresses. Most attractively, in contrast with suffering from drought stress alone, the treatments with drought and additional ABA greatly enhanced the transcript levels of JrMYBs. All these results suggested that JrMYB genes play a vital role in plant biological processes and drought as well as ABA stress response, and possibly perform as ABA-dependent drought response transcription factors in plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37(2):1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Alexander RD, Wendelboe-Nelson C, Morris PC (2019) The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Bioch 142:246–253

    Article  CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5(6):241–246

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools - an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 18(3):1194–1202

    Article  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15(13):1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Jiang T, Xu L, Liu H, Mao H, Wang X, Jiao B, Duan Y, Wang Q, Dong Q, Yang L, Tian G, Zhang C, Zhou Y, Liu X, Wang H, Fan D, Wang B, Luo K (2017) A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiol Biochem 114:100–110

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Wang X, Wang H, Tang X, Liu C, Yin H, Ye S, Jiang Y, Duan Y, Luo K (2020) The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants. Tree Physiol 40(1):46–59

    Article  CAS  PubMed  Google Scholar 

  • González-Villagra J, Cohen JD, Reyes-Díaz MM (2019) Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress. Physiol Plantarum 165(4):855–866

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41(41):95–98

    CAS  Google Scholar 

  • Higginson T, Li S, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35(2):177–192

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0 an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Kiran K, Ansari SA, Srivastava R, Lodhi N, Chaturvedi CP, Sawant SV, Tuli R (2006) The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol 142(1):364–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YVd, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie CA, Walawage SL, Uratsu SL, McGranahan G, Dandekar AM (2015) Walnuts (Juglans). Methods Mol Biol 1224(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ng CK-Y, Fan L-M (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  CAS  Google Scholar 

  • Li G, Wang Z, Yokosho K, Ding B, Fan W, Gong Q, Li G, Wu Y, Yang J, Ma J, Zheng S (2018) Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol 219(1):149–162

    Article  CAS  PubMed  Google Scholar 

  • Li X, Guo C, Ahmad S, Wang Q, Yu J, Liu C, Guo Y (2019) Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses. Biomolecules 9(8):21

    Article  CAS  Google Scholar 

  • Li J, Liu H, Yang C, Wang J, Yan G, Si P, Bai Q, Lu Z, Zhou W, Xu L (2020) Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Ind Crop Prod 143:111924

    Article  CAS  Google Scholar 

  • Linger BR, Price CM (2009) Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol 44(6):434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yu W, Zhang X, Wang G, Cao F, Chen H (2017) Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L. Physiol Mol Biol Pla 23(3):503–516

    Article  CAS  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mmadi MA, Dossa K, Wang L, Zhou R, Wang Y, Cisse N, Sy MO, Zhang X (2017) Functional characterization of the versatile MYB gene family uncovered their important roles in plant development and responses to drought and waterlogging in sesame. Genes (basel) 8(12):362

    Article  CAS  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu J-K, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63(3):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Plant 103(3):437–441

    Article  CAS  Google Scholar 

  • Schwechheimer C, Bevan M (1998) The regulation of transcription factor activity in plants. Trends Plant Sci 3(10):378–383

    Article  Google Scholar 

  • Shin B, Choi G, Yi H, Yang S, Cho I, Kim J, Lee S, Paek N-C, Kim J-H, Song P-S, Choi G (2002) AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J 30(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Xuan A, Bu C, Ci D, Tian M, Zhang D (2019) Osmotic stress-responsive promoter upstream transcripts (PROMPTs) act as carriers of MYB transcription factors to induce the expression of target genes in Populus simonii. Plant Biotechnol J 17(1):164–177

    Article  CAS  PubMed  Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34(4):519–528

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458

    PubMed  PubMed Central  Google Scholar 

  • Wen X, Wang J, Zhang D, Wang Y (2019) A Gene regulatory network controlled by BpERF2 and BpMYB102 in birch under drought conditions. Int J Mol Sci 20(12):3071

    Article  CAS  PubMed Central  Google Scholar 

  • Xu F, Deng G, Cheng S, Zhang W, Huang X, Li L, Cheng H, Rong X, Li J (2012) Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules 17(7):7810–7823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Ge Y, Zhang W, Zhao Y, Yang G (2018) The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biol 18(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Org 117(1):99–112

    Article  CAS  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64(1):60–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Ma R, Xu J, Yan J, Guo L, Song J, Feng R, Yu M, Han Y (2018) Genome-wide identification and classification of MYB superfamily genes in peach. PLoS ONE 13(6):e0199192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L (2019) A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biol 19(1):564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Cheng Z, Guo Q, Yao W, Liu H, Zhou B, Jiang T (2020) Characterization of the poplar R2R3-MYB gene family and over-expression of PsnMYB108 confers salt tolerance in transgenic tobacco. Front Plant Sci 11:571881

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yarra R, Jin L, Cao H (2020) Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq) under abiotic stress conditions. Environ Exp Bot 180:104245

    Article  CAS  Google Scholar 

Download references

Funding

The current study was supported by National Natural Science Foundation of China (31800510), Special Financial Grant from the China Postdoctoral Science Foundation (2017T100782), Northwest A & F University Foundation (TGZX2020-05).

Author information

Authors and Affiliations

Authors

Contributions

Dapei Li and Guiyan Yang conceived and designed the experiments. Dapei Li, Yi He, and Ziyi Li performed the experiments. Shuwen Chen, Bin Ren, and Guiyan Yang assisted in data collection and analysis. Dapei Li, Guiyan Yang and Shaobing Peng drafted the manuscript. All authors read and approved this final manuscript.

Corresponding author

Correspondence to Guiyan Yang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Availability of data and material

All the data were presented in the main manuscript and additional supporting files.

Ethical approval

Not applicable.

Code availability

Not applicable.

Consent to participate

Written informed consent to participate was obtained from all the authors, who not only designed and performed the experiment, but also drafted and completed the manuscript.

Consent for publication

Written informed consent for publication was obtained from all the participants, who agreed with publication in the journal Molecular Breeding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 497 kb)

Supplementary file2 (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Peng, S., Chen, S. et al. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. Physiol Mol Biol Plants 27, 1323–1335 (2021). https://doi.org/10.1007/s12298-021-01008-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01008-z

Keywords

Navigation