Skip to main content
Log in

Distributionally-robust machine learning using locally differentially-private data

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider machine learning, particularly regression, using locally-differentially private datasets. The Wasserstein distance is used to define an ambiguity set centered at the empirical distribution of the dataset corrupted by local differential privacy noise. The radius of the ambiguity set is selected based on privacy budget, spread of data, and size of the problem. Machine learning with private dataset is rewritten as a distributionally-robust optimization. For general distributions, the distributionally-robust optimization problem can be relaxed as a regularized machine learning problem with the Lipschitz constant of the machine learning model as a regularizer. For Gaussian data, the distributionally-robust optimization problem can be solved exactly to find an optimal regularizer. Training with this regularizer can be posed as a semi-definite program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.kaggle.com/wendykan/lending-club-loan-data.

  2. https://archive.ics.uci.edu/ml/datasets/adult.

References

  1. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography, pp. 265–284. Springer, Berlin (2006)

    Chapter  Google Scholar 

  2. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. J. Mach. Learn. Res. 17(1), 492–542 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Dewri, R.: Local differential perturbations: Location privacy under approximate knowledge attackers. IEEE Trans. Mobile Comput. 12(12), 2360–2372 (2013)

    Article  Google Scholar 

  5. Duchi,J. C., Jordan,M. I., Wainwright,M. J.: “Local privacy and statistical minimax rates,” In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438, (2013)

  6. Ren, X., Yu, C.-M., Yu, W., Yang, S., Yang, X., McCann, J.A., Philip, S.Y.: LoPub: High-dimensional crowdsourced data publication with local differential privacy. IEEE Trans. Inf. Forensics Secur. 13(9), 2151–2166 (2018)

    Article  Google Scholar 

  7. Erlingsson,Ú., Pihur,V., Korolova, A.:“RAPPOR: Randomized aggregatable privacy-preserving ordinal response,” In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, pp. 1054–1067, (2014)

  8. Tang,J., Korolova,A., Bai,X., Wang,X., Wang,X.: “Privacy loss in Apple’s implementation of differential privacy on MacOS 10.12,” arXiv preprint arXiv:1709.02753 (2017)

  9. Smith,A., Thakurta,A., Upadhyay, J.:“Is interaction necessary for distributed private learning?,” In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 58–77, IEEE, (2017)

  10. Wang, D., Gaboardi, M., Xu, J.: Empirical riskminimization in non-interactive local differential privacy revisited. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 965–974. Neural Information Processing Systems Foundation (2018)

  11. Zheng,K., Mou,W., Wang,L.: “Collect at once, use effectively: Making non-interactive locally private learning possible,” In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 4130–4139, (2017)

  12. Wang, D., Smith, A., Xu, J.: Noninteractive locally private learning of linear models via polynomial approximations. In: Garivier, A., Kale, S. (eds.) Algorithmic Learning Theory. Proceedings of Machine Learning Research (PMLR), vol. 98, pp. 898–903. Chicago, Illinois, 22–24 Mar 2019

  13. Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115–166 (2018)

    Article  MathSciNet  Google Scholar 

  14. Nguyen,V. A.,  Kuhn,D., Esfahani,P. M.: “Distributionally robust inverse covariance estimation: The wasserstein shrinkage estimator,” arXiv preprint arXiv:1805.07194, (2018)

  15. Ben-Tal, A., El. Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Princeton University Press, New Jersey (2009)

    Book  Google Scholar 

  16. Postek, K., den Hertog, D., Melenberg, B.: Computationally tractable counterparts of distributionally robust constraints on risk measures. SIAM Rev. 58(4), 603–650 (2016)

    Article  MathSciNet  Google Scholar 

  17. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  Google Scholar 

  18. Hu,Z., Hong,L. J.: “Kullback-Leibler divergence constrained distributionally robust optimization,” Available at Optimization Online, (2013)

  19. Sinha,A., Namkoong,H., Duchi,J.: “Certifiable distributional robustness with principled adversarial training,” In: Proceedings of the Machine Learning and Computer Security Workshop (co-located with Conference on Neural Information Processing Systems 2017), vol. 2, (2017)

  20. Chen,R., Paschalidis,I. C.: “A distributionally robust optimization approach for outlier detection,” In: 2018 IEEE Conference on Decision and Control (CDC), pp. 352–357, IEEE, (2018)

  21. Lee,C., Mehrotra,S.: “A distributionally-robust approach for finding support vector machines,” Manuscript, available at http://www.optimization-online.org/DB_HTML/2015/06/4965.html, (2015)

  22. Shafieezadeh Abadeh, S., Mohajerin Esfahani, P.M., Kuhn, D.: Distributionally robust logistic regression. Adv. Neural Inf. Process. Syst. 28, 1576–1584 (2015)

    Google Scholar 

  23. Kuhn,D., Esfahani,P. M., Nguyen,V. A., Shafieezadeh-Abadeh, S.:“Wasserstein distributionally robust optimization: Theory and applications in machine learning,” In: Operations Research & Management Science in the Age of Analytics, pp. 130–166, INFORMS, (2019)

  24. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  25. Brownlees, C., Joly, E., Lugosi, G., et al.: Empirical risk minimization for heavy-tailed losses. Ann. Stat. 43(6), 2507–2536 (2015)

    Article  MathSciNet  Google Scholar 

  26. Farokhi, F.: Deconvoluting kernel density estimation and regression for locally differentially private data. Sci. Rep. 10(1), 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  27. Bickel, P.J., Freedman, D.A., et al.: Some asymptotic theory for the bootstrap. Ann. Stat. 9(6), 1196–1217 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  29. Kantorovich, L.V., Rubinshtein, G.: On a space of totally additive functions. Vestn. Lening. Univ 13, 52–59 (1958)

    MATH  Google Scholar 

  30. Farokhi, F.: Why does regularization help with mitigating poisoning attacks? Neural Processing Letters (2021). https://doi.org/10.1007/s11063-021-10539-1

  31. Hall, R., Rinaldo, A., Wasserman, L.: Random differential privacy. J. Privacy Confident. 4(2), 43–59 (2012)

    Google Scholar 

  32. Rippl, T., Munk, A., Sturm, A.: Limit laws of the empirical wasserstein distance: Gaussian distributions. J. Multi. Anal. 151, 90–109 (2016)

    Article  MathSciNet  Google Scholar 

  33. Givens, C.R., Shortt, R.M.: A class of wasserstein metrics for probability distributions. Michigan Math. J. 31(2), 231–240 (1984)

    Article  MathSciNet  Google Scholar 

  34. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  35. Zhang, F.: The Schur complement and its applications, vol. 4. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Farokhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, F. Distributionally-robust machine learning using locally differentially-private data. Optim Lett 16, 1167–1179 (2022). https://doi.org/10.1007/s11590-021-01765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01765-6

Keywords

Navigation