Skip to main content
Log in

Collective dynamics of neuronal network under synapse and field coupling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Electrical and chemical synapses are essential for signal exchange between neurons. The continuous exchange of ion concentration in cells will induce complex time-varying electromagnetic fields, which can further regulate the dynamic response of neural electrical activities. Therefore, it is of practical significance to introduce the magnetic field and electric field into the traditional neuron model and study the collective dynamics of neuronal network. In this paper, the standard deviation and synchronization factor are introduced to measure the intensity of electrical activity and network synchronization, respectively. It can be found that varying electrical synapse coupling can change the effects of the magnetic coupling strength and cell size on synchronization. On the other hand, for lower magnetic field coupling strength and cell size, the electrical synapse coupling can induces synchronization more effectively. Our obtained results will provide new insights into signal coding and transition between neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: tructure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R.A., Barabási, A.: lászló: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Newman, M.E.J.: The Structure and Function of Complex Networks. Siam Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gratwicke, J., Jahanshahi, M., Foltynie, T.: Parkinson’s disease dementia: a neural networks perspective. Brain 138, 1454–1476 (2015)

    Article  Google Scholar 

  5. Yao, Z., Wang, C., Zhou, P., Ma, J.: Regulating synchronous patterns in neurons and networks via field coupling. Commun. Nonlinear Sci. 95, 105583–105597 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)

    Article  Google Scholar 

  7. Zhong, X., Gao, Y.: Synchronization of inertial neural networks with time-varying delays via quantized sampled-data control. IEEE Trans. Neural Networks Learn. Syst. 1, 1–15 (2020)

    Google Scholar 

  8. Sun, X., Lei, J., Perc, M., Kurths, J., Chen, G.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110–016119 (2011)

    Article  Google Scholar 

  9. Zhou, Q., Wei, D.: Synchronous dynamics in multilayer memristive neural networks: effect of electromagnetic induction. IEEE Access. 8, 164727–164736 (2020)

    Article  Google Scholar 

  10. Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)

    Article  Google Scholar 

  11. Xu, Y., Jia, Y., Wang, H., Liu, Y., Wang, P., Zhao, Y.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)

    Article  MATH  Google Scholar 

  12. Shi, X., Lu, Q.S.: Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chin. Phys. 14, 77–85 (2005)

    Article  Google Scholar 

  13. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Yao, Z., Zhou, P., Zhu, Z., Ma, J.: Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–534 (2021)

    Article  Google Scholar 

  15. Li, L., Cao, J.: Cluster synchronization in an array of coupled stochastic delayed neural networks via pinning control. Neurocomputing 74, 846–856 (2011)

    Article  Google Scholar 

  16. Wang, Z., Shi, X.: Lag synchronization of multiple identical Hindmarsh–Rose neuron models coupled in a ring structure. Nonlinear Dyn. 60, 375–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Condens. Matter. 5, 1–18 (2002)

    Google Scholar 

  18. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 1741021–1741024 (2004)

    Article  Google Scholar 

  19. Xu, F., Zhang, J., Jin, M., Huang, S., Fang, T.: Chimera states and synchronization behavior in multilayer memristive neural networks. Nonlinear Dyn. 94, 775–783 (2018)

    Article  Google Scholar 

  20. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  21. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)

    Article  Google Scholar 

  22. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks. 14, 1569–1572 (2003)

    Article  Google Scholar 

  24. Hindmarsh, J.L., Rose, R.M.: A model for the nerve impulse propagation using two first-order differential equations (1982)

  25. Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  26. Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lu, L., Kirunda, J.B., Xu, Y., Kang, W., Ye, R., Zhan, X., Jia, Y.: Effects of temperature and electromagnetic induction on action potential of Hodgkin-Huxley model. Eur. Phys. J. Spec. Top. 227, 767–776 (2018)

    Article  Google Scholar 

  28. Ge, M., Lu, L., Xu, Y., Zhan, X., Yang, L., Jia, Y.: Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh–Rose neural networks. Eur. Phys. J. Spec. Top. 228, 2455–2464 (2019)

    Article  Google Scholar 

  29. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  30. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

  31. Wu, F., Wang, C., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  32. Guo, S., Xu, Y., Wang, C., Jin, W., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y., Xu, Y., Yao, Z., Ma, J.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Article  Google Scholar 

  34. Deng, B., Wang, J., Wei, X.: Effect of chemical synapse on vibrational resonance in coupled neurons. Chaos 19, 0131171–0131176 (2009)

    Google Scholar 

  35. Liu, C., Wang, J., Wang, L., Yu, H., Deng, B., Wei, X., Tsang, K., Chan, W.: Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses. Chaos Solitons Fractals 59, 1–12 (2014)

    Article  MathSciNet  Google Scholar 

  36. Shafiei, M., Jafari, S., Parastesh, F., Ozer, M., Kapitaniak, T., Perc, M.: Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 84 (2020)

  37. Yu, H., Wang, J., Liu, C., Deng, B., Wei, X.: Delay-induced synchronization transitions in small-world neuronal networks with hybrid electrical and chemical synapses. Phys. A Stat. Mech. Appl. 392, 5473–5480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. U. S. A. 101, 15482–15487 (2004)

    Article  Google Scholar 

  39. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1–10 (2018)

    Google Scholar 

  40. Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Article  Google Scholar 

  41. Wei, D.Q., Luo, X.S., Zou, Y.L.: Firing activity of complex space-clamped FitzHugh–Nagumo neural networks. Eur. Phys. J. B. 63, 279–282 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of PRC under grant no. 62062014; the Innovation Project of Guangxi Graduate Education Grant Nos. XYCSZ2020052 and XJGY2020002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Qu Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wei, D.Q. Collective dynamics of neuronal network under synapse and field coupling. Nonlinear Dyn 105, 753–765 (2021). https://doi.org/10.1007/s11071-021-06575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06575-0

Keywords

Navigation