Skip to main content
Log in

Weighted link entropy and multiscale weighted link entropy for complex time series

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, weighted link entropy (WLE) and multiscale weighted link entropy (MWLE) are proposed as novel measures to quantify complexity of nonlinear time series. MWLE is different from traditional weighted permutation entropy (WPE) in that its proposal is based on the combination of symbolic ordinal analysis and networks. Besides, the analysis of MWLE takes into account multiple time scales inherent in complex systems. The advantages of the proposed methods are investigated by simulations on synthetic signals and real-world data. Based on the study of synthetic data, we find that a significant advantage of WLE is its reduced sensitivity to noise. WLE shows the trend of more chaotic of system as the variance of Gaussian white noise increases. In addition, WLE has a wider range of variations when the system is in a chaotic state and can detect minute changes of complexity in complex systems as control parameters vary. To further show the utility of MWLE and WLE methods, we provide new evidences of their application in financial time series. By comparing WLE with the mean and variance of closing price data, WLE can predict the occurrence of financial crisis in advance. Furthermore, MWLE is capable of helping mark off different regions of stock markets, detecting their multiscale structure and reflects more information containing in financial time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ivanov, P.C., Hu, K., Hilton, M.F., Shea, S.A., Stanley, H.E.: Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proc. Nat. Acad. Sci. 104(52), 20702–20707 (2007)

    Article  Google Scholar 

  2. Ivanov, P.C., Ma, Q.D., Bartsch, R.P., Hausdorff, J.M., Amaral, L.A.N., Schulte-Frohlinde, V., Stanley, H.E., Yoneyama, M.: Levels of complexity in scale-invariant neural signals. Phys. Rev. E 79(4), 041920 (2009)

    Article  MathSciNet  Google Scholar 

  3. Tian, Z.: Chaotic characteristic analysis of network traffic time series at different time scales. Chaos Solitons Fract. 130, 109412 (2020)

    Article  MathSciNet  Google Scholar 

  4. Luque, B., Lacasa, L., Ballesteros, F.J., Robledo, A.: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos Interdiscipl. J. Nonlinear Sci. 22(1), 013109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nayak, S.R., Mishra, J., Palai, G.: Analysing roughness of surface through fractal dimension: a review. Image Vis. Comput. 89, 21–34 (2019)

    Article  Google Scholar 

  6. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  8. Ray, S., Das, S.S., Mishra, P., Al Khatib, A.M.G.: Time series sarima modelling and forecasting of monthly rainfall and temperature in the south Asian countries. Earth Syst. Environ. 1–16 (2021)

  9. Valipour, M., Bateni, S.M., Gholami Sefidkouhi, M.A., Raeini-Sarjaz, M., Singh, V.P.: Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere 11(10), 1081 (2020)

    Article  Google Scholar 

  10. Whitwell, H.J., Blyuss, O., Menon, U., Timms, J.F., Zaikin, A.: Parenclitic networks for predicting ovarian cancer. Oncotarget 9(32), 22717 (2018)

    Article  Google Scholar 

  11. Rehman, A., Jingdong, L., Chandio, A.A., Hussain, I., Wagan, S.A., Memon, Q.U.A.: Economic perspectives of cotton crop in Pakistan: a time series analysis (1970–2015)(part 1). J. Saudi Soc. Agric. Sci. 18(1), 49–54 (2019)

    Google Scholar 

  12. Bian, C., Qin, C., Ma, Q.D., Shen, Q.: Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 85(2), 021906 (2012)

    Article  Google Scholar 

  13. Masoller, C., Hong, Y., Ayad, S., Gustave, F., Barland, S., Pons, A.J., Gómez, S., Arenas, A.: Quantifying sudden changes in dynamical systems using symbolic networks. New J. Phys. 17(2), 023068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, W., Zhang, Y., Wang, J.: Quantitative analysis in nonlinear complexity detection of meditative heartbeats. Physica A 512, 1060–1068 (2018)

    Article  Google Scholar 

  15. Daw, C.S., Finney, C.E.A., Tracy, E.R.: A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 74(2), 915–930 (2003)

    Article  Google Scholar 

  16. Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E 87(2), 022911 (2013)

    Article  Google Scholar 

  17. Yin, Y., Shang, P.: Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 78(4), 2921–2939 (2014)

    Article  MathSciNet  Google Scholar 

  18. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z., Yao, L., Cai, Y.: Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine. Measurement 156, 107574 (2020)

    Article  Google Scholar 

  20. Said, Z., Ghodbane, M., Sundar, L.S., Tiwari, A.K., Sheikholeslami, M., Boumeddane, B.: Heat transfer, entropy generation, economic and environmental analyses of linear fresnel reflector using novel rGo-Co3O4 hybrid nanofluids. Renew. Energy 165, 420–437 (2021)

    Article  Google Scholar 

  21. Delgado-Bonal, A., Marshak, A.: Approximate entropy and sample entropy: a comprehensive tutorial. Entropy 21(6), 541 (2019)

    Article  MathSciNet  Google Scholar 

  22. Mo, H., Deng, Y.: Identifying node importance based on evidence theory in complex networks. Physica A 529, 121538 (2019)

    Article  Google Scholar 

  23. Yang, Y., Yang, H.: Complex network-based time series analysis. Physica A 387(5–6), 1381–1386 (2008)

    Article  Google Scholar 

  24. Van Der Mheen, M., Dijkstra, H.A., Gozolchiani, A., Den Toom, M., Feng, Q., Kurths, J., Hernandez-Garcia, E.: Interaction network based early warning indicators for the Atlantic MOC collapse. Geophys. Res. Lett. 40(11), 2714–2719 (2013)

    Article  Google Scholar 

  25. Donges, J.F., Donner, R.V., Rehfeld, K., Marwan, N., Trauth, M.H., Kurths, J.: Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis. Nonlinear Process. Geophys. 18(5), 545–562 (2011)

    Article  Google Scholar 

  26. Marwan, N., Schinkel, S., Kurths, J.: Recurrence plots 25 years later-gaining confidence in dynamical transitions. EPL (Europhys. Lett.) 101(2), 20007 (2013)

    Article  Google Scholar 

  27. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks—a novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010)

    Article  MATH  Google Scholar 

  28. Lacasa, L., Toral, R.: Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 82(3), 036120 (2010)

    Article  Google Scholar 

  29. Luque, B., Lacasa, L., Ballesteros, F.J., Robledo, A.: Feigenbaum graphs: a complex network perspective of chaos. PLoS ONE 6(9), e22411 (2011)

    Article  Google Scholar 

  30. Núnez, A.M., Luque, B., Lacasa, L., Gómez, J.P., Robledo, A.: Horizontal visibility graphs generated by type-I intermittency. Phys. Rev. E 87(5), e22411 (2013)

    Article  Google Scholar 

  31. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Nat. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zanin, M.: Forbidden patterns in financial time series. Chaos Interdiscipl. J. Nonlinear Sci. 18(1), 013119 (2008)

    Article  Google Scholar 

  33. Amigó, J.M., Zambrano, S., Sanjuán, M.A.: True and false forbidden patterns in deterministic and random dynamics. EPL (Europhys. Lett.) 79(5), 50001 (2007)

    Article  MathSciNet  Google Scholar 

  34. Ji, A., Shang, P.: Analysis of financial time series through forbidden patterns. Physica A 534, 122038 (2019)

  35. Lawnik, M.: Combined logistic and tent map. J. Phys. Conf. Ser. 1141, 012132 (2018)

    Article  Google Scholar 

  36. Mintzelas, A., Sarlis, N., Christopoulos, S.R.: Estimation of multifractality based on natural time analysis. Physica A 512, 153–164 (2018)

    Article  MathSciNet  Google Scholar 

  37. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (61673005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijing Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and analysed during the current study are available in the finance of yahoo, [http://finance.yahoo.com/].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lin, A. Weighted link entropy and multiscale weighted link entropy for complex time series. Nonlinear Dyn 105, 541–554 (2021). https://doi.org/10.1007/s11071-021-06599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06599-6

Keywords

Navigation