research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Alkali metal salts of 4-hy­dr­oxy­benzoic acid: a structural and educational study

crossmark logo

aSchool of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia, bSchool of Molecular Science, La Trobe University, Wodonga, VIC 3690, Australia, and cScotch College, 1 Morrison Street, Hawthorn, VIC 3122, Australia
*Correspondence e-mail: christopher.commons@unimelb.edu.au

Edited by M. Gardiner, Australian National University, Australia (Received 30 April 2021; accepted 25 May 2021; online 9 June 2021)

As part of an educational exercise designed to introduce school students to the technique of single-crystal X-ray diffraction and enhance their understanding of primary and secondary bonding, a group of nine secondary school students was given the opportunity to prepare new com­pounds and to solve and refine data collected on the crystalline materials they had prepared. Their investigation of the alkali metal salts of 4-hy­droxy­benzoic acid (H2hba) yielded nine new com­pounds and their structures are described in this article. Whilst the salts might be expected to have similar atomic arrangements, there are significant differences in their structures. Although H2hba is a relatively simple organic mol­ecule, it displays remarkable coordinative flexibility, forming ionic solids containing the uncharged mol­ecule, the monoanion Hhba or the dianion hba2−. A common feature of the structures is their layered arrangement: alternating hydro­philic layers made up of closely packed metal–oxygen polyhedra separated by the hydro­phobic com­ponent of the hy­droxy­benzoate linking units. Close packing of these units seems to be a dominant influence in determining the overall structure. The hy­droxy­benzoate units are usually both parallel and anti­parallel with their immediate neighbours, with packing that can be edge-to-face, face-to-face or a mixture of the two. Hydrogen bonding plays a key role in the structure of most com­pounds and a short strong hydrogen bond (SSHB) is observed in two of the networks. The com­pounds of 4-hy­droxy­benzoic acid, C7H6O3, described here are: poly[di-μ-aqua-μ-4-oxidobenzoato-dilithium], [Li2(C7H4O3)(H2O)2]n, 1, poly[tri­aqua-μ-4-oxidobenzoato-dilithium], [Li2(C7H4O3)(H2O)3]n, 2, poly[μ-4-hy­droxy­benzoato-lithium], [Li(C7H5O3)]n, 3, catena-poly[4-hy­droxy­benzoate [[di­aqua­sodium]-di-μ-aqua]], {[Na(H2O)4](C7H5O3)}n, 4, poly[di-μ-aqua-aqua-μ-4-hy­droxy­benzoato-potassium], [K(C7H5O3)(H2O)3]n, 5, poly[μ-aqua-μ-4-hy­droxy­benzoato-potassium], [K(C7H5O3)(H2O)]n, 6, poly[aqua-μ-4-hy­droxy­benzoato-rubidium], [Rb(C7H5O3)(H2O)]n, 7, poly[aqua-μ-4-hy­droxy­benzoato-caesium], [Cs(C7H5O3)(H2O)]n, 8, poly[[μ-aqua-aqua­(μ-4-hy­droxy­benzoato)(4-hy­droxy­benzoic acid)sodium] monohydrate], {[Na(C7H5O3)(C7H6O3)(H2O)2]·H2O}n, 9, poly[[(μ-4-hy­droxy­benzoato)(μ-4-hy­droxy­benzoic acid)rubidium] monohydrate], {[K(C7H5O3)(C7H6O3)]·H2O}n, 10, and poly[[(μ-4-hy­droxy­benzoato)(μ-4-hy­droxy­benzoic acid)rubidium] monohydrate], {[Rb(C7H5O3)(C7H6O3)]·H2O}n, 11.

1. Introduction

In the study of chemistry, an understanding of the various types of chemical bonding is essential and thus it is not surprising that introductory chemistry courses at the secondary school level tend to have a strong emphasis on primary and secondary bonding. Many of the ideas that are presented to students have come from the analysis of bonds within and between mol­ecules, the structures of which have been determined by the technique of single-crystal X-ray diffraction. It is therefore somewhat surprising that the role of X-ray crystallography in providing detailed representations of mol­ecules is poorly recognized in many secondary school chemistry courses worldwide.

The reason that crystallography does not tend to form part of school chemistry curricula is perhaps due to the traditional inaccessibility of the technique. It would be fair to say that for a large part of the 20th century, crystal structures were determined by expert crystallographers who had extensive training in the technique and possessed a detailed understanding of the theory that underpinned the collection of data, the structural solution and the refinement process. For many chemists it was an unavailable technique unless one was able to collaborate with a crystallographer.

The 21st century has seen rapid development in both crystallographic hardware (sources and detectors) and software. Data sets can now be collected in minutes and improve­ments in both com­puters and crystallographic pro­grams with easy-to-use GUI inter­faces have allowed rapid structure solution and refinement of structures, particularly for routine structures. These advancements have allowed crys­tallographic novices to measure their own data and determine their structure quickly and with relative ease. Of course, there are traps for the inexperienced crystallographer, but nevertheless the technique of X-ray crystallography has never been so widely accessible.

As research chemists with a particular inter­est in crystallography and chemical education, we recognized an opportunity to expose secondary school students to crystallography. As part of a pilot elective program, students in the penultimate year of secondary education (Year 11; average age 16 years) from Scotch College, a school in the suburbs of Melbourne, were invited to participate in a seven-week after-school research investigation. The program consisted of weekly one hour sessions that included the basic principles of crystallography, workshops on the use of the OLEX2 software package (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and experimental work to make new crystalline com­pounds in the school laboratory.

[Scheme 1]

In order for school students to participate in a research project that involves synthesis and structure determination, we recognized that the synthetic work would need to be straightforward. Our research group has had a long-standing inter­est in coordination networks in which ZnII and CoII centres are linked by the dianion of 4-hy­droxy­benzoic acid (H2hba) (White et al., 2015[White, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard-Casely, H. E. & Robson, R. (2015). Chem. Eur. J. 21, 18057-18061.]) and we thought an investigation of alkali metal salts of the acid might be easily performed.

The car­box­yl group of H2hba is deprotonated with relative ease (pKa 4.5 com­pared with 4.2 for benzoic acid) to form the Hhba anion. Under some conditions, the phenolic group can also be deprotonated (pKa 9.7 com­pared with 10.0 for phenol), to form the dianion hba2−. Given the coordinative versatility of the O-donor atoms of H2hba and its ability to form ions with either 1− and 2− charges, it was recognized that there may be an inter­esting systematic variation in the structures that could be obtained.

Transition-metal com­pounds of aromatic polycar­box­yl­ate ligands, such as benzene-1,4-di­car­box­yl­ate and benzene-1,3,5-tri­car­box­yl­ate, have been widely studied as a consequence of the potential applications for coordination polymers in drug delivery, gas storage, catalysis, separation and electrochemical applications (Li et al., 2020[Li, T., Bai, Y., Wang, Y., Xu, H. & Jin, H. (2020). Coord. Chem. Rev. 410, 213221.]; Shi et al., 2019[Shi, Y., Yang, A., Cao, C. & Zhao, B. (2019). Coord. Chem. Rev. 390, 50-75.]). On the other hand, relatively few car­box­yl­ate com­pounds of the s-block metals have been studied (Alnaqbi et al., 2021[Alnaqbi, M. A., Alzamly, A., Ahmed, S. H., Bakiro, M., Kegere, J. & Nguyen, H. L. (2021). J. Mater. Chem. A, 9, 3828-3854.]; Banerjee & Parise, 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]) and phenolate/car­box­yl­ate ligands have received little attention.

The Cambridge Structural Database (CSD; Version 5.42, February 2021 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists just four structures made only from H2hba and alkali metals. Skinner & Speakman (1951[Skinner, J. M. & Speakman, J. C. (1951). J. Chem. Soc. pp. 185-191.]) isolated a potassium salt containing a proton placed symmetrically between adjacent car­box­yl­ate groups with a formula that can be represented as K(H2hba)(Hhba)·H2O. The structure of this com­pound is discussed further in this article and improved structural data with more accurate mol­ecular geometries are also provided. Skinner and Speakman mention the existence of an isostructural rubidium com­pound but no further details are given.

A sodium salt containing the anion Hhba has been made by reacting H2hba and sodium metal in tetra­hydro­furan (Dinnebier et al., 1999[Dinnebier, R. E., Von Dreele, R., Stephens, P. W., Jelonek, S. & Sieler, J. (1999). J. Appl. Cryst. 32, 761-769.]). The salt can be represented by the formula Na(Hhba) and, using powder X-ray diffraction methods, the com­pound was shown to consist of layers of distorted NaO6 prisms with arene rings perpendicular to these layers and pointing up and down. The network is held together by hydrogen bonding between the phenolic hy­droxy groups.

Finally, a lithium metal oxide framework containing the hba2− dianion of formula Li2(hba)(CH3OH)2 has been pre­pared by heating t-BuOLi and H2hba in a mixture of methanol and hexane (Zhao et al., 2018[Zhao, X., Shimazu, M. S., Chen, X., Bu, X. & Feng, P. (2018). Angew. Chem. Int. Ed., 57, 1-5.]). It is com­posed of parallel helical chains of Li—O rings. These chains are bridged by hba2− units to form channels with a triangular cross section.

This article reports the structures of nine new alkali metal salts of H2hba and also provides data for the salt Rb(H2hba)(Hhba)·H2O, which has been mentioned in the literature but not characterized previously by single-crystal X-ray diffraction. The investigations that resulted in the structures described in this article were successful in generating inter­est and enthusiasm among the students who performed the experimental work and initial crystallographic processing, as well as enhancing their understanding of chemical bonding. Furthermore, we believe the research will be of inter­est to the wider scientific community. Not only are the structures of the individual com­pounds inherently inter­esting, but collectively they demonstrate the effects of reaction stoichiometry, ion size, hydrogen bonding and the nature of the ligand and solvent in the formation of ionic networks involving metal ions and organic anions.

2. Experimental

2.1. Synthesis and crystallization

In a series of reactions, H2hba was combined with the hydroxides of lithium, sodium, potassium, rubidium and caesium in different stoichiometric ratios.

Typically, this involved the addition of 0.10 g (0.73 mmol) of H2hba to the appropriate amount of metal hydroxide in 5 ml of warm water (50 °C). Crystals of the alkali metal salts suitable for single-crystal X-ray diffraction formed upon cooling and evaporation of the solvent.

Li2(hba)·2H2O and Li2(hba)·3H2O were formed from 2:1 stoichiometric ratios of LiOH and H2hba, whereas Li(Hhba) was prepared from a 1:1 reaction mixture. For sodium, a 1:1 mixture of the hydroxide and H2hba yielded Na(Hhba)(H2hba)·3H2O and a 1:1.5 mixture yielded Na(Hhba)·4H2O.

A 1:1 combination of KOH and H2hba yielded both plate-shaped crystals of K(Hhba)·3H2O and rod-shaped crystals of K(Hhba)·H2O, whereas K(H2hba)(Hhba)·H2O crystals were obtained from a 1:2 reaction mixture. Crystals of Rb(H2hba)(Hhba)·H2O were formed from a 1:1 mixture, and a 1:2 mixture yielded Rb(Hhba)·H2O. Cs(Hhba)·H2O was formed in reactions using different stoichiometric ratios (the crystal used for data collection came from a 1:2.5 CsOH–H2hba mixture).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of the water mol­ecules, phenolic groups and carb­oxy­lic acid groups were located in difference Fourier maps and refined with O—H distances restrained to 0.85 Å, except for the H atoms involved in the short strong hydrogen bonds in K(H2hba)(Hhba)·H2O and Rb(H2hba)(Hhba)·H2O, which were located in difference Fourier maps and refined independently. The Uiso values of the H atoms bonded to O atoms were allowed to refine. Other H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The uncoordinated water mol­ecules are disordered in com­pound 10 and the H atoms of the water mol­ecules are disordered in both 10 and 11. As a consequence, their positions have not been assigned. The phenolic H atoms in 10 and 11 are disordered over two positions. Details of the refinements can be found in the embedded instruction files in the CIF files.

Table 1
Experimental details

Experiments were carried out using a Rigaku XtalLAB Synergy-S diffractometer at 100 K, except for the data for compounds 1 and 2, which were collected on a Rigaku Supernova diffractometer at 130 K. Cu Kα radiation was employed, with the exception of the data collection for compound 8, which used Mo Kα radiation. H atoms were treated by a mixture of independent and constrained refinement.

  1 2 3 4
Crystal data
Chemical formula [Li2(C7H4O3)(H2O)2] [Li2(C7H4O3)(H2O)3] [Li(C7H5O3)] [Na(H2O)4](C7H5O3)
Mr 186.01 204.03 144.05 232.16
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca Monoclinic, P21/c Triclinic, P[\overline{1}]
a, b, c (Å) 7.1897 (3), 11.7989 (5), 18.5349 (8) 13.9791 (6), 7.4348 (3), 18.2797 (7) 14.8904 (4), 5.0487 (1), 8.4721 (2) 6.7058 (2), 6.8114 (2), 12.5933 (3)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 99.281 (2), 90 83.361 (2), 75.966 (2), 72.945 (2)
V3) 1572.33 (12) 1899.84 (13) 628.57 (3) 532.89 (3)
Z 8 8 4 2
μ (mm−1) 1.10 1.04 0.99 1.47
Crystal size (mm) 0.24 × 0.16 × 0.07 0.27 × 0.10 × 0.06 0.36 × 0.21 × 0.12 0.17 × 0.06 × 0.06
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Analytical [CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.905, 1.000 0.869, 1.000 0.760, 0.924 0.880, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3789, 1588, 1412 4091, 1874, 1672 4598, 1321, 1235 5395, 2117, 1704
Rint 0.019 0.019 0.027 0.058
(sin θ/λ)max−1) 0.629 0.625 0.634 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.04 0.031, 0.084, 1.04 0.033, 0.093, 1.07 0.042, 0.116, 1.06
No. of reflections 1588 1874 1321 2117
No. of parameters 143 160 104 175
No. of restraints 6 7 1 13
Δρmax, Δρmin (e Å−3) 0.23, −0.29 0.30, −0.21 0.22, −0.27 0.25, −0.33
  5 6 7 8
Crystal data
Chemical formula [K(C7H5O3)(H2O)3] [K(C7H5O3)(H2O)] [Rb(C7H5O3)(H2O)] [Cs(C7H5O3)(H2O)]
Mr 230.26 194.23 240.60 288.04
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca Monoclinic, P21/c Monoclinic, P21/c
a, b, c (Å) 12.34808 (14), 11.25501 (14), 7.07200 (8) 10.0126 (2), 7.6695 (2), 20.0996 (4) 10.1069 (1), 10.0060 (1), 8.0198 (1) 10.1271 (2), 10.1220 (2), 8.6270 (1)
α, β, γ (°) 90, 102.1980 (11), 90 90, 90, 90 90, 98.557 (1), 90 90, 102.953 (2), 90
V3) 960.66 (2) 1543.48 (6) 802.01 (2) 861.82 (3)
Z 4 8 4 4
μ (mm−1) 4.94 5.83 8.30 4.27
Crystal size (mm) 0.31 × 0.24 × 0.08 0.33 × 0.21 × 0.04 0.47 × 0.15 × 0.05 0.34 × 0.23 × 0.13
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.509, 1.000 0.444, 1.000 0.121, 1.000 0.666, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6174, 1952, 1878 6496, 1615, 1439 5073, 1615, 1543 22548, 5490, 4758
Rint 0.029 0.072 0.031 0.044
(sin θ/λ)max−1) 0.634 0.634 0.634 0.921
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.05 0.052, 0.147, 1.07 0.025, 0.070, 1.10 0.027, 0.065, 1.05
No. of reflections 1952 1615 1615 5490
No. of parameters 155 121 121 121
No. of restraints 7 4 4 4
Δρmax, Δρmin (e Å−3) 0.46, −0.41 0.61, −0.57 0.42, −0.73 0.81, −1.58
  9 10 11
Crystal data
Chemical formula [Na(C7H5O3)(C7H6O3)(H2O)2]·H2O [K(C7H5O3)(C7H6O3)]·H2O [Rb(C7H5O3)(C7H6O3)]·H2O
Mr 352.26 332.34 378.71
Crystal system, space group Monoclinic, P21/n Monoclinic, P2/c Monoclinic, P2/c
a, b, c (Å) 7.6704 (2), 10.1413 (3), 19.8263 (4) 16.4136 (4), 3.76614 (9), 11.1651 (3) 16.3445 (5), 3.8267 (1), 11.3460 (3)
α, β, γ (°) 90, 92.001 (2), 90 90, 92.533 (2), 90 90, 94.437 (2), 90
V3) 1541.31 (8) 689.51 (3) 707.51 (3)
Z 4 2 2
μ (mm−1) 1.34 3.71 5.14
Crystal size (mm) 0.15 × 0.08 × 0.03 0.51 × 0.07 × 0.03 0.51 × 0.05 × 0.04
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Analytical [CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.476, 1.000 0.453, 1.000 0.366, 0.830
No. of measured, independent and observed [I > 2σ(I)] reflections 10034, 3135, 2564 3764, 1399, 1311 6047, 1456, 1389
Rint 0.068 0.033 0.055
(sin θ/λ)max−1) 0.633 0.634 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.05 0.039, 0.111, 1.06 0.036, 0.097, 1.11
No. of reflections 3135 1399 1456
No. of parameters 253 114 110
No. of restraints 11 2 2
Δρmax, Δρmin (e Å−3) 0.36, −0.38 0.45, −0.36 0.50, −0.69
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.], 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.], 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. https://crystalmaker.com/.]).

3. Results and discussion

Each of the com­pounds formed by the reaction of the alkali metal hydroxides and H2hba in aqueous solution can be classified within one of three categories according to the metal–Hnhba ratio in the crystal structure (n = 0, 1 or 2).

Type I: M2(hba)(H2O)x (M = Li, x = 2 and 3).

Type II: M(Hhba)(H2O)x (M = Li, x = 0; M = Na, x = 4; M = K, x = 3; M = K, Rb or Cs, x = 1).

Type III: Na(Hhba)(H2hba)(H2O)2·H2O and M(Hhba)(H2hba)·H2O (M = K or Rb).

3.1. Structure description of type I com­pounds: M2(hba)(H2O)x

Whilst H2hba can lose protons to form either the 1− or 2− ions, i.e. Hhba or hba2−, lithium is the only group I metal that yielded salts containing the dianion under the reaction conditions employed in this investigation. The loss of the weakly acidic phenolic proton in the presence of the lithium ion may be a consequence of the relatively small size of the Li+ ion resulting in a strong Li—O inter­action, which in turn promotes the loss of the proton of the hy­droxy group.

A dihydrate, 1, and a trihydrate, 2, crystallized from aqueous 2:1 molar mixtures of LiOH and H2hba. The structures of their asymmetric units are shown in Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric units of Li2(hba)(H2O)2 (1) and Li2(hba)(H2O)3 (2), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size.

Compound 1 contains Li—O layers (hydro­philic sheets) that are formed from lithium ions linked by car­box­yl­ate and phenolate groups from hba2−, creating helical chains which run in the a direction (Fig. 2[link]a). Bridging water mol­ecules (shown in green in Fig. 2[link]b) link these chains to form two-dimensional (2D) layers. Each Li+ ion is four-coordinate and bonded to two bridging water mol­ecules, a bridging phenolate O atom and a car­box­yl­ate O atom.

[Figure 2]
Figure 2
The Li—O layers in com­pound 1 showing (a) lithium centres linked by car­box­yl­ate and phenolate O atoms to form helical chains within the Li—O layers, and (b) the same layer as in (a), but with bridging water mol­ecules included. The H and C atoms of the arene rings have been omitted. Colour code: Li purple, car­box­yl­ate and phenolate O red, water O green and C black.

The extended packing arrangement in 1 is shown in Fig. 3[link](a). The hba2− ligands extend above and below the Li—O sheets to form a pillared-type three-dimensional (3D) network. The hydro­philic sheets are separated by the hydro­phobic sections of hba2−, with a sheet-to-sheet separation of approximately 9.3 Å (half the length of the c axis). Hydro­philic M—O layers separated by hydro­phobic regions is an arrangement common to all of the structures of the alkali metal–Hnhba com­pounds described in the current work. This layered architecture is characteristic of many of the structures pre­viously reported for coordination polymers of alkali metals (Banerjee & Parise, 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]).

[Figure 3]
Figure 3
The structure of 1, showing (a) a view down the a axis, highlighting the hydro­phobic pillars of hba2− units between the hydro­philic Li—O sheets (H atoms have been omitted), and (b) a space-filling model of the closely packed hba2− anions arranged in parallel and anti­parallel configurations. Colour code: Li purple, C black, car­box­yl­ate and phenolate O red, water O green and H pale pink.

The hba2− pillars form stacks arranged in a face-to-face pattern (Fig. 3[link]b), with alternating orientations of the ligand.

Whilst the trihydrate, 2, is also com­posed of hydro­philic Li—O sheets separated by hydro­phobic organic regions, there are marked differences in its structure com­pared with the structure of 1. Each car­box­yl­ate O atom is bonded to one Li+ ion in com­pound 1, whereas one of the car­box­yl­ate O atoms is bonded to two metal ions in 2, forming a 2D network in which four-coordinate lithium centres form discrete intra­sheet Li4 units within a sheet involving four- and six-membered rings (Fig. 4[link]a).

[Figure 4]
Figure 4
The structure of 2, showing (a) Li4 units containing four- and six-membered rings, (b) Li4 units within a hydro­philic sheet, (c) neighbouring Li4 units linked to each other in adjacent sheets that are separated by the hydro­phobic sections of hba2− linkers and (d) the hba2− units packed in an edge-to-face pattern. H atoms have been omitted in parts (a), (b) and (c). Colour code: Li purple, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

Fig. 4[link](b) shows the arrangement of these Li4 units within a hydro­philic sheet. Although the Li4 units within each sheet are not linked by strong bonds, neighbouring Li4 units are linked to other Li4 units via bonds to atoms in the adjacent hydro­philic sheets, resulting in a 2D network which extends in the bc plane (Fig. 4[link]c). The sheet-to-sheet separation is about 9.15 Å (half the length of the c axis). Unlike the dihydrate salt, 1, the hba2− pillars are packed in an edge-to-face arrangement, inverted along the a axis, as shown in Fig. 4[link](d).

3.2. Structure description of type II com­pounds: M(Hhba)(H2O)x

All the alkali metals in this study form com­pounds con­taining the monoanion Hhba and have the general formula M(Hhba)(H2O)x (M = Li, x = 0; M = Na, x = 4; M = K, x = 3; M = K, Rb or Cs, x = 1). Their asymmetric units are shown in Fig. 5[link]. Four different structural arrangements are observed in this group of salts.

[Figure 5]
Figure 5
The asymmetric units of Li(Hhba), 3, [Na(H2O)4][Hhba], 4, K(Hhba)(H2O)3, 5, K(Hhba)(H2O), 6, Rb(Hhba)(H2O), 7, and Cs(Hhba)(H2O), 8, showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hydrogen-bonding inter­actions.

Compound 3, LiHhba, is a 2D ionic network formed in a 1:1 reaction of LiOH and H2hba. Within the Li—O layers, each car­box­yl­ate O atom bridges two lithium ions to form four-, six- and eight-membered rings (Fig. 6[link]a). The Hhba pillars of each layer are closely stacked in an edge-to-face pattern (Fig. 6[link]b), with each Li—O layer about 14.9 Å apart (the length of the a axis).

[Figure 6]
Figure 6
The structure of 3, showing (a) four-, six- and eight-membered rings formed by tetra­hedral lithium centres and car­box­yl­ate atoms, (b) the Hhba ligands closely packed in a face-to-edge arrangement and (c) a packing diagram of com­pound 3 viewed along the b axis. H atoms have been omitted in parts (a) and (c). Colour code: Li purple, O red, C black and H pale pink.

Each phenolic OH group forms two hydrogen bonds with phenolic OH groups on an adjacent 2D framework (Fig. 6[link]c), holding the hydro­phobic regions from the two layers together in a bilayer motif. There are, therefore, two types of hydro­philic layers within the structure: the layers containing Li+ ions and, between these layers, ones com­posed of phenolic OH groups. The presence of a bilayer packing motif has been observed in many other metal car­box­yl­ates, although it is more common in aliphatic salts than in salts of aromatic acids (Vela & Foxman, 2000[Vela, M. J. & Foxman, B. M. (2000). Cryst. Eng. 3, 11-31.]).

Dinnebier et al. (1999[Dinnebier, R. E., Von Dreele, R., Stephens, P. W., Jelonek, S. & Sieler, J. (1999). J. Appl. Cryst. 32, 761-769.]) reported the synthesis of a salt of formula Na(Hhba) which has a similar bilayer structure to that of Li(Hhba) described above. It was made by reacting H2hba and sodium metal in tetra­hydro­furan and powder X-ray diffraction was used to determine its structure. The salt consists of layers of distorted NaO6 prisms and the layers are held together by hydrogen bonding between the phenolic groups. Unlike Li(Hhba), the arene rings, which are orientated perpendicular to these layers, are arranged in parallel stacks.

The structure of 4, [Na(H2O)4][Hhba], is quite different to all the other structures described in this article because the metal centres are not bonded to organic anions. The Na+ ions are present as {Na(H2O)4+}n chains in which octa­hedral Na+ ions are located within a square-planar arrangement of four bridging water mol­ecules (Fig. 7[link]a). Strong intra­chain hydrogen bonding [O⋯O = 2.696 (2) Å] involving the axial water mol­ecules `pinches' the O atoms of the water mol­ecules together in pairs.

[Figure 7]
Figure 7
The structure of 4, showing (a) {Na(H2O)4+}n chains involving bridging water mol­ecules; intra­chain hydrogen bonding between pairs of axial water mol­ecules (shown as black and white bonds) `pinches' the O atoms in these mol­ecules together in pairs. (b) The anti­parallel slipped stacking pattern of Hhba anions and (c) the packing arrangement, viewed along the b axis. Colour code: Na yellow, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

The Hhba pillars are arranged in an anti­parallel slipped stacking pattern (Fig. 7[link]b). They form hydrogen bonds with the water mol­ecules coordinated to the Na+ ions, with a layer-to-layer separation of approximately 12.2 Å (Fig. 7[link]c).

The potassium salt 5, K(Hhba)(H2O)3, may be considered to be a 2D network. The hydro­philic K—O layer shown in Fig. 8[link](a) is com­posed of distorted KO8 square anti­prisms formed between the metal ions and the O atoms from water mol­ecules and one car­box­yl­ate O atom of each Hhba unit bridging K+ centres. Fig. 8[link](b) shows the face-to-face and edge-to-edge close packing of the organic pillars; ππ stacking inter­actions are present between the cofacial Hhba ligands [the centroids of the face-to-face pairs are 3.503 (2) Å apart]. The arene rings of Hhba are perpendicular to the hydro­philic K—O layers and point up and down; they are inter­leaved with the arene rings of adjacent layers, as shown in Fig. 8[link](c). Phenolic OH groups participate in hydrogen-bonding inter­actions with the water mol­ecules bonded to the K centres in adjacent parallel sheets, which are about 12.3 Å apart.

[Figure 8]
Figure 8
The structure of 5, showing (a) layers of distorted KO8 prisms formed from the metal ions, the O atoms of water mol­ecules (shown in green) and one car­box­yl­ate O atom from each Hhba unit. (b) The edge-to-face and face-to-face stacking of the Hhba ligands; note the inversion that occurs within face-to-face pairs. (c) The packing arrangement, viewed along the c axis. H atoms have been omitted in parts (a) and (c). Colour code: K blue, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

3D networks with the general formula M(Hhba)(H2O) are formed with potassium, rubidium and caesium. Compound 6 is ortho­rhom­bic and shares some structural features with the isostructural monoclinic com­pounds, 7 and 8. Taking the rubidium salt, com­pound 7, as the exemplar, each Rb+ ion is seven-coordinate and each car­box­yl­ate group is linked to four Rb+ ions (Fig. 9[link]a). The phenolic O atom, even though pro­tonated, bridges two Rb+ ions. Each water mol­ecule bonds to only one metal ion. The Hhba pillars are packed in a face-to-face and edge-to-edge arrangement (Fig. 9[link]b), forming the 3D network shown in Fig. 9[link](c).

[Figure 9]
Figure 9
The structure of 7, showing (a) the Rb—O layer, viewed along the a axis; C atoms in the arene rings and H atoms have been omitted. (b) The stacking of the Hhba ligands, similar to that seen in com­pound 5; the centroids of the face-to-face pairs are approximately 3.83 Å apart. (c) The packing arrangement, viewed down the b axis, with H atoms omitted. Colour code: Rb purple, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

As seen for the rubidium salt in Fig. 9[link](b), there is a pronounced rotation of the atoms in the car­box­yl­ate groups away from the plane of the aromatic ring in the potassium, rubi­dium and caesium M(Hhba)(H2O) com­pounds [K 25.13 (8), Rb 26.86 (8) and Cs 24.49 (6)°]. The metal cations bonded to the car­box­yl­ate O atoms in these com­pounds are also not in the plane of the car­box­yl­ate group. Such configurations are uncommon in transition-metal–car­box­yl­ate com­plexes because the transition-metal ion is generally located in the plane of the car­box­yl­ate group. In s-block com­pounds, the bonds are mainly ionic in nature with little or no directionality and thus crystal packing forces and other steric considerations can dominate.

The structures of 6, 7 and 8 have similar connectivity and are com­pared in Fig. S1 of the supporting information.

3.3. Structure description of type III com­pounds: Na(Hhba)(H2hba)(H2O)2·H2O and M(Hhba)(H2hba)·H2O

Na(Hhba)(H2hba)(H2O)2·H2O (com­pound 9) is a 2D layer lattice which, like the previous com­pounds, is com­posed of hydro­philic and hydro­phobic regions. The hydro­phobic regions contain both neutral H2hba and the monoanion, Hhba, both of which are coordinated to each metal ion (Fig. 10[link]).

[Figure 10]
Figure 10
The asymmetric unit of Na(Hhba)(H2hba)(H2O)2·H2O, 9, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted line represents a hydrogen-bonding inter­action.

There is extensive hydrogen bonding in each Na—O layer and the Na+ ions are linked by a pair of bridging water mol­ecules to form disodium units (Fig. 11[link]a). Octa­hedral Na+ ions are coordinated by three water mol­ecules, two bridging and one terminal. The Na+ ion is also coordinated by one phenolic O atom; the phenolic group on the other organic ligand is noncoordinated and does not participate in hydrogen bonding. Finally, the remaining cis sites on each Na+ ion are occupied by an O atom of a protonated car­box­ylic acid group and an O atom of a deprotonated car­box­yl­ate group.

[Figure 11]
Figure 11
The structure of 9, showing (a) a disodium unit linked by a pair of bridging water mol­ecules, (b) the packing arrangement, viewed down the a axis (H atoms have been omitted), and (c) the close-packed alternating stacking of the H2hba and Hhba ligands. Colour code: Na yellow, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

The disodium units are linked by the organic ligands to form a 2D network in the bc plane. Within each network, the organic units separate the Na+ ions by approximately 9.7 Å, as shown in Fig. 11[link](b). Hydrogen bonds to intra­planar uncoordinated water mol­ecules and between coordinated water mol­ecules and phenolic groups on adjacent layers link the layers together. Alternate stacks of H2hba and Hhba ligands are shown in Fig. 11[link](c).

Potassium and rubidium hydroxide react with H2hba to form com­pounds 10 and 11 with a general formula that can be represented as M(Hhba)(H2hba)·H2O. As indicated in the Introduction, the structure of the potassium salt was first determined by Skinner & Speakman (1951[Skinner, J. M. & Speakman, J. C. (1951). J. Chem. Soc. pp. 185-191.]) and a more accurate study was performed in 1968 (Manojlović, 1968[Manojlović, L. (1968). Acta Cryst. B24, 326-330.]). As part of our investigation, single-crystal X-ray diffraction of a crystal of this com­pound has confirmed the previous results and provides more accurate mol­ecular geometries. Furthermore, we have also obtained the first single-crystal X-ray diffraction data for the isostructural rubidium analogue that is mentioned in the article of Skinner and Speakman.

A feature of these potassium and rubidium com­pounds is the presence of an unusually strong inter­action between two car­box­yl­ate O atoms involving a three-centre four-electron O⋯H⋯O hydrogen bond (Fig. 12[link]). The O atoms involved are closely separated: 2.448 (3) Å in the potassium com­pound and 2.466 (4) Å in the rubidium com­pound. These bonds can be described as `short strong' (SSHB) or `low barrier' (LBHB) hydrogen bonds and may be considered partly covalent in character (Reiersølmoen et al., 2020[Reiersølmoen, A. C., Battaglia, S., Øien-Ødegaard, S., Gupta, A. K., Fiksdahl, A., Lindh, R. & Erdélyi, M. (2020). Chem. Sci. 11, 7979-7990.]; Saunders et al., 2019[Saunders, L. K., Nowell, H., Hatcher, L. E., Shepherd, H. J., Teat, S. J., Allan, D. R., Raithby, P. R. & Wilson, C. C. (2019). CrystEngComm, 21, 5249-5260.]). On the basis of a single peak of electron density, we have elected to assign the H atom to the mid-point of the two O atoms. However, it is possible that the H atom is disordered over two closely separated positions. The crystallographic data does not allow us to clearly differentiate between a symmetrical or a disordered model.

[Figure 12]
Figure 12
The asymmetric units of K(Hhba)(H2hba)·H2O, 10, and Rb(Hhba)(H2hba)·H2O, 11, expanded to show the short strong hydrogen bonds present between car­box­yl­ate O atoms. Displacement ellipsoids of atoms other than hydrogen are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. In the case of both 10 and 11, only one position of a disordered phenolic H atom is shown for clarity. The water mol­ecule in 11 is disordered over two positions; the H atoms on O4 are disordered in both com­pounds and were not assigned.

Although we have chosen to represent the formulae of these com­pounds as M(Hhba)(H2hba)·H2O, if the proton is fixed in the symmetrical position, the organic ligand in these com­pounds could be regarded as the fusion of a H2hba and a Hhba unit and represented as H(Hhba)2, with each hy­droxy­benzoate unit having an average charge of −0.5.

The com­pounds form 2D ionic networks with both car­box­yl­ate O atoms bridging six-coordinate metal centres (Fig. 13[link]a). The hy­droxy­benzoate pillars are closely packed in parallel stacks in a face-to-face and edge-to-edge pattern, as shown in Fig. 13[link](b).

[Figure 13]
Figure 13
(a) The structure of 10, showing the K—O layer, indicating the bridging car­box­yl­ate units and the location of the O⋯H⋯O SSHB inter­actions (shown as black and white bonds); H and C atoms in the arene rings have been omitted. (b) The organic ligands arranged in parallel stacks and (c) the packing arrangement, viewed down the b axis, showing the bilayer motif; H atoms on the arene rings and water mol­ecules have been omitted. For clarity, the disorder in the water mol­ecules located between adjacent hydro­phobic regions is not shown. Colour code: K blue, car­box­yl­ate and phenolate O red, water O green, C black and H pale pink.

Hydrogen bonding between the phenolic OH groups and un­coordinated water mol­ecules located between two adjacent hydro­phobic regions holds the lattice together and creates a bi­layer motif with a hydro­philic layer of water mol­ecules and phe­nolic OH groups midway between the M—O hydro­philic layers (Fig. 13[link]c). The M—O layers are about 16.4 Å apart.

The intra­layer water mol­ecules are disordered in com­pound 10 and the H atoms of the water mol­ecules are disordered in both com­pounds 10 and 11, and their positions have not been assigned. The phenolic H atoms are disordered over two positions.

3.4. Packing of hydro­phobic and hydro­philic layers

As described above, a common feature of the structures of the alkali metal salts of H2hba described in this work is the hydro­philic M—O layers separated by hydro­phobic regions of hy­droxy­benzoate units. It is perhaps surprising that similar layer structures are obtained regardless of the level of protonation of the hy­droxy­benzoate unit, i.e. the fully pro­ton­ated H2hba, the monoanion Hhba and the dianion hba2− are arranged in such a way that hydro­philic groups participate in hydrogen bonding which appears to be important in the generation of layered structures. The hy­droxy­benzoate units adopt different packing arrangements in this series of com­pounds, including face-to-face, edge-to-face and a mixture of both. A slipped stacking arrangement is observed in com­pound 4 and three com­pounds contain a bilayer motif in which two discrete hydro­phobic layers are held together by hydro­gen bonds (com­pounds 3, 10 and 11).

Although the packing modes differ, the number of hy­droxy­benzoate ligands that pass through a cross-sectional plane through the hydro­phobic layers and parallel to the M—O hydro­philic layer is calculated to be between 4.6 to 5.2 units per nm2 for most com­pounds. As indicated in the space-filling representations shown above, ligands are packed closely, with distances between adjacent mol­ecules close to or less than that expected based on the van der Waals radii of their constituent atoms. The organic units in com­pound 2 are less closely packed (3.8 ligands per nm2) due to penetration of coordinated water mol­ecules into the `hydro­phobic' layers.

Close packing of the organic ligands seems to be a dominant factor in determining overall structure. As the ratio of metal ions, coordinated water mol­ecules and hy­droxy­benzoate units changes in the com­pounds, the almost constant packing density of the hy­droxy­benzoate units influences the geometry and connectivity of the M—O hydro­philic layer.

In com­pounds 3, 4, 5, 10 and 11, the metal ions are in, or almost in, a plane and in com­pound 1 a sinusoidal pattern of metal ions is observed. Two planes of metal ions are present within each hydro­philic layer in com­pounds 2, 6, 7, 8 and 9, an arrangement that allows the metal ions to be packed more densely in the layer than if only a single plane of metal ions were present. Fig. 14[link] shows the different topologies of the hydro­philic layers in the three lithium salts.

[Figure 14]
Figure 14
The hydro­philic layer in the lithium salts: (a) sinusoidal pattern of Li+ ions in com­pound 1, (b) two planes of Li+ ions in 2 and (c) a single plane of Li+ ions in 3. H atoms have been omitted. Colour code: Li purple, water O green, car­box­yl­ate and phenolate O red and C black.

4. Conclusion

Given that H2hba is a relatively simple organic mol­ecule, the salts that crystallize from aqueous solution when H2hba reacts with alkali metal hydroxides might be expected to form only a few different structures. However, although the structures of the salts have features in common, they are also remarkably different. The ligand can bond to metal ions as a dianion (hba2−), a monoanion (Hhba) or as the neutral acid species (H2hba), allowing for considerable possible structural variation.

Most of the salts are either 2D or 3D ionic networks com­posed of alternating hydro­philic layers of closely packed M—O polyhedra separated by the hydro­phobic nonpolar com­ponent of the pillar-like hy­droxy­benzoate linking units.

The hy­droxy­benzoate units in the hydro­phobic sections of the lattices are usually closely packed; a feature that seems to impact on the arrangement of metal ions in the hydro­philic layers and hence the structures overall. Whilst the ligands are usually present in two distinct orientations within a hydro­phobic layer [with the exception of M(Hhba)(H2hba)·H2O; M = K or Rb], the packing observed in different salts includes edge-to-face, face-to-face and a mixture of the two. A bilayer packing arrangement is formed in three com­pounds. The metal ions may be both in the plane and out of the plane of the coordinating car­box­yl­ate group. The car­box­yl­ate group generally remains in the plane of the arene rings, although significant twisting is noted in M(Hhba)(H2O) (M = K, Rb or Cs).

Hydrogen bonds play a key role in the structure of all the com­pounds. They are present between the hydro­philic layers, as in K(Hhba)(H2O)3, within layers, as in Li2(hba)(H2O)2, and also in the form of an SSHB in M(Hhba)(H2hba)·H2O (M = K or Rb).

Li+ is the only metal ion to give the dianion form of the ligand under the reaction conditions used in this investigation, perhaps as a consequence of its high charge density and the strength of the Li—O inter­action.

This investigation of the alkali metal salts of H2hba proved to be highly successful in demonstrating the fundamental roles of strong and weak bonding inter­actions in the structure of materials to senior secondary school students. The salts display bonding types ranging from covalent bonds, ionic attractions, ion–dipole inter­actions, neutral and charge-assisted hydrogen bonding, and dispersion forces. Whilst the salts are readily synthesized, the structures of most of the com­pounds prepared in this study have not been reported previously, allowing students to experience genuine scientific discovery and also to appreciate the power, precision and convenience of the technique of X-ray crystallography for structure analysis.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for compound1; CrysAlis PRO (Rigaku OD, 2018) for compound2, compound3, compound4, compound6, compound7, compound8, compound9, compound11; CrysAlis PRO (Rigaku OD, 2021) for compound5, compound10. Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for compound1; CrysAlis PRO (Rigaku OD, 2018) for compound2, compound3, compound4, compound6, compound7, compound8, compound9, compound11; CrysAlis PRO (Rigaku OD, 2021) for compound5, compound10. Data reduction: CrysAlis PRO (Rigaku OD, 2015) for compound1; CrysAlis PRO (Rigaku OD, 2018) for compound2, compound3, compound4, compound6, compound7, compound8, compound9, compound11; CrysAlis PRO (Rigaku OD, 2021) for compound5, compound10. For all structures, program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[di-µ-aqua-µ-4-oxidobenzoato-dilithium] (compound1) top
Crystal data top
[Li2(C7H4O3)(H2O)2]Dx = 1.572 Mg m3
Mr = 186.01Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 1701 reflections
a = 7.1897 (3) Åθ = 4.8–75.3°
b = 11.7989 (5) ŵ = 1.10 mm1
c = 18.5349 (8) ÅT = 130 K
V = 1572.33 (12) Å3Block, colourless
Z = 80.24 × 0.16 × 0.07 mm
F(000) = 768
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
1588 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1412 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.2273 pixels mm-1θmax = 76.0°, θmin = 4.8°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1411
Tmin = 0.905, Tmax = 1.000l = 2319
3789 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.3002P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1588 reflectionsΔρmax = 0.23 e Å3
143 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52587 (15)0.33791 (9)0.12929 (6)0.0118 (2)
C20.54080 (15)0.33645 (9)0.20900 (6)0.0116 (2)
C30.59705 (15)0.23924 (9)0.24586 (6)0.0128 (2)
H30.6308430.1733850.2194480.015*
C40.60419 (16)0.23761 (9)0.32059 (6)0.0129 (2)
H40.6421780.1704210.3446810.015*
C50.55603 (15)0.33398 (9)0.36138 (6)0.0116 (2)
C60.49950 (17)0.43150 (9)0.32356 (6)0.0144 (2)
H60.4659160.4977370.3496320.017*
C70.49211 (17)0.43231 (9)0.24888 (6)0.0144 (2)
H70.4533660.4990530.2244690.017*
Li10.2554 (3)0.44276 (16)0.03961 (10)0.0151 (4)
Li20.5674 (3)0.30462 (16)0.01030 (10)0.0154 (4)
O10.47496 (12)0.42836 (7)0.09816 (4)0.0146 (2)
O20.56201 (11)0.24872 (7)0.09299 (4)0.0141 (2)
O30.56757 (11)0.33438 (6)0.43335 (4)0.01220 (19)
O40.19519 (12)0.60560 (6)0.02474 (4)0.01284 (19)
H4A0.137 (2)0.6421 (14)0.0578 (9)0.030 (4)*
H4B0.117 (3)0.6175 (17)0.0116 (9)0.048 (6)*
O50.34787 (11)0.38812 (6)0.05372 (4)0.0132 (2)
H5A0.273 (3)0.3476 (14)0.0775 (10)0.037 (5)*
H5B0.389 (3)0.4436 (14)0.0790 (10)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0094 (5)0.0134 (5)0.0125 (5)0.0025 (4)0.0000 (4)0.0007 (4)
C20.0117 (5)0.0130 (5)0.0102 (5)0.0013 (4)0.0006 (4)0.0004 (4)
C30.0144 (5)0.0110 (5)0.0129 (5)0.0002 (4)0.0004 (4)0.0011 (4)
C40.0147 (5)0.0113 (5)0.0126 (5)0.0007 (4)0.0011 (4)0.0014 (4)
C50.0102 (5)0.0149 (5)0.0098 (5)0.0029 (4)0.0002 (4)0.0002 (4)
C60.0178 (6)0.0121 (5)0.0135 (5)0.0022 (4)0.0000 (4)0.0022 (4)
C70.0175 (5)0.0123 (5)0.0134 (5)0.0020 (4)0.0013 (4)0.0010 (4)
Li10.0164 (9)0.0143 (8)0.0145 (8)0.0001 (7)0.0001 (7)0.0006 (7)
Li20.0167 (9)0.0162 (9)0.0134 (8)0.0003 (7)0.0007 (7)0.0001 (7)
O10.0168 (4)0.0146 (4)0.0123 (4)0.0024 (3)0.0034 (3)0.0039 (3)
O20.0163 (4)0.0159 (4)0.0101 (3)0.0004 (3)0.0004 (3)0.0024 (3)
O30.0151 (4)0.0137 (4)0.0078 (4)0.0009 (3)0.0002 (3)0.0000 (3)
O40.0141 (4)0.0131 (4)0.0113 (4)0.0015 (3)0.0002 (3)0.0006 (3)
O50.0156 (4)0.0124 (4)0.0117 (4)0.0016 (3)0.0007 (3)0.0002 (3)
Geometric parameters (Å, º) top
C1—C21.4814 (14)Li1—Li2ii3.262 (3)
C1—O11.2672 (14)Li1—Li2iii3.287 (3)
C1—O21.2758 (14)Li1—O11.923 (2)
C2—C31.3950 (15)Li1—O3iv1.926 (2)
C2—C71.3958 (15)Li1—O41.989 (2)
C3—H30.9500Li1—O51.962 (2)
C3—C41.3860 (15)Li2—O12.572 (2)
C4—H40.9500Li2—O3v1.944 (2)
C4—C51.4087 (15)Li2—O4iii2.027 (2)
C5—C61.4072 (15)Li2—O52.027 (2)
C5—Li1i2.659 (2)O4—H4A0.858 (14)
C5—O31.3367 (13)O4—H4B0.888 (15)
C6—H60.9500O5—H5A0.845 (15)
C6—C71.3853 (15)O5—H5B0.857 (15)
C7—H70.9500
O1—C1—C2119.00 (10)O4—Li1—Li2iii35.44 (5)
O1—C1—O2120.89 (10)O4—Li1—Li2ii138.69 (10)
O2—C1—C2120.11 (10)O5—Li1—C5iv129.23 (9)
C3—C2—C1121.27 (10)O5—Li1—Li2iii91.20 (8)
C3—C2—C7118.65 (10)O5—Li1—Li2ii72.51 (7)
C7—C2—C1120.04 (10)O5—Li1—O4105.61 (9)
C2—C3—H3119.6Li1vi—Li2—Li1iii128.56 (7)
C4—C3—C2120.77 (10)O1—Li2—Li1vi138.18 (8)
C4—C3—H3119.6O1—Li2—Li1iii73.42 (6)
C3—C4—H4119.5O3v—Li2—Li1vi32.39 (5)
C3—C4—C5121.06 (10)O3v—Li2—Li1iii132.53 (9)
C5—C4—H4119.5O3v—Li2—O1154.00 (10)
C4—C5—Li1i128.87 (9)O3v—Li2—O4iii111.68 (10)
C6—C5—C4117.63 (10)O3v—Li2—O5101.37 (9)
C6—C5—Li1i96.01 (8)O4iii—Li2—Li1vi95.55 (8)
O3—C5—C4121.55 (10)O4iii—Li2—Li1iii34.68 (5)
O3—C5—C6120.81 (10)O4iii—Li2—O191.39 (7)
O3—C5—Li1i43.61 (6)O4iii—Li2—O5110.45 (9)
C5—C6—H6119.5O5—Li2—Li1vi133.73 (9)
C7—C6—C5120.96 (10)O5—Li2—Li1iii78.20 (7)
C7—C6—H6119.5O5—Li2—O180.40 (7)
C2—C7—H7119.5C1—O1—Li1124.64 (9)
C6—C7—C2120.93 (10)C1—O1—Li278.65 (7)
C6—C7—H7119.5Li1—O1—Li279.70 (8)
C5iv—Li1—Li2iii139.54 (8)C5—O3—Li1i107.79 (8)
C5iv—Li1—Li2ii57.29 (6)C5—O3—Li2vii122.22 (9)
Li2ii—Li1—Li2iii160.82 (9)Li1i—O3—Li2vii114.88 (9)
O1—Li1—C5iv90.60 (8)Li1—O4—Li2iii109.88 (9)
O1—Li1—Li2ii110.79 (8)Li1—O4—H4A119.5 (12)
O1—Li1—Li2iii81.68 (8)Li1—O4—H4B113.3 (13)
O1—Li1—O3iv111.72 (10)Li2iii—O4—H4A104.0 (12)
O1—Li1—O4110.01 (10)Li2iii—O4—H4B110.5 (14)
O1—Li1—O5100.97 (10)H4A—O4—H4B98.9 (17)
O3iv—Li1—C5iv28.60 (4)Li1—O5—Li294.22 (9)
O3iv—Li1—Li2ii32.73 (5)Li1—O5—H5A115.4 (13)
O3iv—Li1—Li2iii156.47 (10)Li1—O5—H5B110.3 (14)
O3iv—Li1—O4121.66 (11)Li2—O5—H5A115.5 (13)
O3iv—Li1—O5104.40 (9)Li2—O5—H5B108.5 (14)
O4—Li1—C5iv116.41 (9)H5A—O5—H5B111.6 (18)
C1—C2—C3—C4177.70 (10)C6—C5—O3—Li1i63.32 (13)
C1—C2—C7—C6177.95 (10)C6—C5—O3—Li2vii160.27 (11)
C2—C1—O1—Li1118.90 (11)C7—C2—C3—C40.12 (17)
C2—C1—O1—Li2172.22 (10)Li1i—C5—C6—C7139.98 (11)
C2—C3—C4—C50.36 (17)Li1i—C5—O3—Li2vii136.41 (13)
C3—C2—C7—C60.10 (17)O1—C1—C2—C3179.70 (10)
C3—C4—C5—C60.36 (16)O1—C1—C2—C72.51 (16)
C3—C4—C5—Li1i124.65 (12)O2—C1—C2—C31.06 (16)
C3—C4—C5—O3178.04 (10)O2—C1—C2—C7176.73 (11)
C4—C5—C6—C70.14 (17)O2—C1—O1—Li160.35 (15)
C4—C5—O3—Li1i115.03 (11)O2—C1—O1—Li28.53 (10)
C4—C5—O3—Li2vii21.38 (15)O3—C5—C6—C7178.28 (10)
C5—C6—C7—C20.09 (18)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1, y+1, z; (iv) x1/2, y, z+1/2; (v) x, y+1/2, z1/2; (vi) x+1/2, y+1/2, z; (vii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2viii0.86 (1)2.01 (2)2.8056 (11)153 (2)
O4—H4B···O3ix0.89 (2)1.77 (2)2.6343 (11)165 (2)
O5—H5A···O2ii0.85 (2)1.92 (2)2.7130 (11)157 (2)
O5—H5B···O1iii0.86 (2)1.83 (2)2.6439 (11)157 (2)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1, y+1, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1, z1/2.
Poly[triaqua-µ-4-oxidobenzoato-dilithium] (compound2) top
Crystal data top
[Li2(C7H4O3)(H2O)3]Dx = 1.427 Mg m3
Mr = 204.03Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 2017 reflections
a = 13.9791 (6) Åθ = 4.8–73.8°
b = 7.4348 (3) ŵ = 1.04 mm1
c = 18.2797 (7) ÅT = 130 K
V = 1899.84 (13) Å3Rect. Prism, colourless
Z = 80.27 × 0.10 × 0.06 mm
F(000) = 848
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
1874 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1672 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.2273 pixels mm-1θmax = 74.6°, θmin = 4.8°
ω scansh = 1711
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 96
Tmin = 0.869, Tmax = 1.000l = 1822
4091 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.5031P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1874 reflectionsΔρmax = 0.30 e Å3
160 parametersΔρmin = 0.21 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40721 (8)0.74441 (15)0.42944 (6)0.0135 (2)
C20.39831 (8)0.73339 (15)0.34795 (6)0.0136 (2)
C30.46265 (8)0.82556 (15)0.30322 (6)0.0149 (2)
H30.5082160.9040220.3248570.018*
C40.46144 (8)0.80502 (15)0.22803 (6)0.0153 (2)
H40.5074740.8664590.1991010.018*
C50.39298 (8)0.69439 (15)0.19362 (6)0.0133 (2)
C60.32608 (8)0.60573 (15)0.23879 (6)0.0154 (2)
H60.2777760.5331450.2172240.019*
C70.32995 (8)0.62321 (15)0.31429 (6)0.0147 (2)
H70.2854260.5592850.3437080.018*
Li10.33826 (14)0.6237 (3)0.56927 (11)0.0171 (4)
Li20.50106 (14)0.6217 (3)0.05794 (11)0.0174 (4)
O10.37089 (7)0.41352 (13)0.62274 (5)0.0239 (2)
H1A0.3525 (14)0.309 (2)0.6109 (11)0.042 (5)*
H1B0.4127 (14)0.399 (3)0.6562 (11)0.055 (6)*
O20.19955 (6)0.60387 (12)0.56503 (5)0.0187 (2)
H2A0.1774 (14)0.619 (3)0.5225 (8)0.040 (5)*
H2B0.1734 (13)0.507 (2)0.5825 (10)0.037 (5)*
O30.37053 (6)0.62010 (12)0.46712 (5)0.0192 (2)
O40.45181 (6)0.87588 (11)0.45696 (4)0.01618 (19)
O50.39308 (6)0.67338 (11)0.12138 (4)0.01410 (19)
O60.61908 (6)0.76572 (12)0.06774 (5)0.0199 (2)
H6A0.6187 (14)0.877 (2)0.0566 (11)0.042 (5)*
H6B0.6539 (14)0.746 (3)0.1048 (10)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (5)0.0138 (5)0.0119 (5)0.0015 (4)0.0008 (4)0.0001 (4)
C20.0163 (5)0.0138 (5)0.0105 (5)0.0008 (4)0.0008 (4)0.0002 (4)
C30.0173 (5)0.0140 (5)0.0135 (5)0.0017 (4)0.0019 (4)0.0001 (4)
C40.0173 (5)0.0152 (5)0.0133 (5)0.0016 (4)0.0015 (4)0.0012 (4)
C50.0157 (5)0.0131 (5)0.0110 (5)0.0034 (4)0.0012 (4)0.0000 (4)
C60.0142 (5)0.0172 (5)0.0149 (6)0.0013 (4)0.0020 (4)0.0013 (4)
C70.0146 (5)0.0154 (5)0.0140 (5)0.0008 (4)0.0014 (4)0.0009 (4)
Li10.0199 (9)0.0176 (9)0.0136 (9)0.0022 (7)0.0012 (7)0.0003 (7)
Li20.0197 (9)0.0189 (10)0.0138 (9)0.0015 (7)0.0001 (7)0.0007 (7)
O10.0266 (5)0.0174 (5)0.0278 (5)0.0006 (4)0.0090 (4)0.0026 (4)
O20.0182 (4)0.0190 (4)0.0188 (4)0.0023 (3)0.0023 (3)0.0037 (3)
O30.0282 (5)0.0176 (4)0.0117 (4)0.0060 (3)0.0031 (3)0.0003 (3)
O40.0217 (4)0.0155 (4)0.0113 (4)0.0029 (3)0.0008 (3)0.0014 (3)
O50.0179 (4)0.0158 (4)0.0087 (4)0.0011 (3)0.0003 (3)0.0003 (3)
O60.0226 (4)0.0164 (4)0.0209 (4)0.0006 (3)0.0030 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—C21.4969 (14)Li1—O11.899 (2)
C1—O31.2616 (14)Li1—O21.946 (2)
C1—O41.2637 (15)Li1—O31.921 (2)
C2—C31.3954 (16)Li1—O5i1.942 (2)
C2—C71.4010 (16)Li2—O4ii1.970 (2)
C3—H30.9500Li2—O4iii1.962 (2)
C3—C41.3830 (16)Li2—O51.942 (2)
C4—H40.9500Li2—O61.975 (2)
C4—C51.4100 (16)O1—H1A0.846 (15)
C5—C61.4110 (16)O1—H1B0.853 (16)
C5—O51.3297 (13)O2—H2A0.846 (15)
C6—H60.9500O2—H2B0.869 (14)
C6—C71.3873 (15)O6—H6A0.852 (15)
C7—H70.9500O6—H6B0.847 (16)
Li1—Li2i2.967 (3)
O3—C1—C2118.00 (10)O3—Li1—C5i138.08 (10)
O3—C1—O4123.35 (10)O3—Li1—Li2i76.17 (8)
O4—C1—C2118.65 (10)O3—Li1—O2101.20 (10)
C3—C2—C1120.17 (10)O3—Li1—O5i113.27 (10)
C3—C2—C7117.99 (10)O5i—Li1—C5i26.33 (4)
C7—C2—C1121.72 (10)O5i—Li1—Li2i40.18 (6)
C2—C3—H3119.3O5i—Li1—O2118.15 (11)
C4—C3—C2121.35 (10)O4iii—Li2—O4ii89.76 (9)
C4—C3—H3119.3O4ii—Li2—O6111.83 (10)
C3—C4—H4119.5O4iii—Li2—O6103.72 (10)
C3—C4—C5121.07 (10)O5—Li2—O4iii121.89 (11)
C5—C4—H4119.5O5—Li2—O4ii106.63 (10)
C4—C5—C6117.47 (10)O5—Li2—O6119.20 (11)
O5—C5—C4120.73 (10)Li1—O1—H1A123.3 (14)
O5—C5—C6121.80 (10)Li1—O1—H1B129.7 (16)
C5—C6—H6119.6H1A—O1—H1B106 (2)
C7—C6—C5120.83 (10)Li1—O2—H2A113.0 (14)
C7—C6—H6119.6Li1—O2—H2B117.9 (12)
C2—C7—H7119.4H2A—O2—H2B107.2 (17)
C6—C7—C2121.22 (10)C1—O3—Li1128.01 (10)
C6—C7—H7119.4C1—O4—Li2iv146.20 (9)
C5i—Li1—Li2i62.05 (6)C1—O4—Li2i123.54 (9)
O1—Li1—C5i84.98 (8)Li2iv—O4—Li2i90.23 (9)
O1—Li1—Li2i112.13 (10)C5—O5—Li1ii113.30 (9)
O1—Li1—O2101.38 (10)C5—O5—Li2128.11 (9)
O1—Li1—O3115.61 (11)Li1ii—O5—Li299.65 (9)
O1—Li1—O5i106.98 (10)Li2—O6—H6A120.0 (14)
O2—Li1—C5i110.30 (9)Li2—O6—H6B117.3 (15)
O2—Li1—Li2i144.07 (10)H6A—O6—H6B111 (2)
C1—C2—C3—C4174.15 (10)C5—C6—C7—C21.97 (17)
C1—C2—C7—C6176.09 (10)C6—C5—O5—Li1ii103.33 (12)
C2—C1—O3—Li1161.39 (11)C6—C5—O5—Li2131.95 (12)
C2—C1—O4—Li2i162.32 (10)C7—C2—C3—C42.04 (17)
C2—C1—O4—Li2iv20.4 (2)O3—C1—C2—C3157.60 (11)
C2—C3—C4—C52.06 (17)O3—C1—C2—C718.45 (16)
C3—C2—C7—C60.04 (17)O3—C1—O4—Li2iv160.47 (14)
C3—C4—C5—C60.04 (16)O3—C1—O4—Li2i16.81 (17)
C3—C4—C5—O5179.08 (10)O4—C1—C2—C321.57 (15)
C4—C5—C6—C71.94 (16)O4—C1—C2—C7162.38 (10)
C4—C5—O5—Li1ii77.68 (13)O4—C1—O3—Li119.48 (18)
C4—C5—O5—Li247.05 (16)O5—C5—C6—C7177.08 (10)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2v0.85 (2)1.89 (2)2.7171 (13)167 (2)
O2—H2B···O5vi0.87 (1)1.78 (2)2.6432 (12)173 (2)
O6—H6A···O3iv0.85 (2)1.86 (2)2.7146 (12)175 (2)
Symmetry codes: (iv) x+1, y+1/2, z+1/2; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1, z+1/2.
Poly[µ-4-hydroxybenzoato-lithium] (compound3) top
Crystal data top
[Li(C7H5O3)]F(000) = 296
Mr = 144.05Dx = 1.522 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.8904 (4) ÅCell parameters from 2876 reflections
b = 5.0487 (1) Åθ = 3.0–76.6°
c = 8.4721 (2) ŵ = 0.99 mm1
β = 99.281 (2)°T = 100 K
V = 628.57 (3) Å3Plate, colourless
Z = 40.36 × 0.21 × 0.12 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1321 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1235 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 78.0°, θmin = 3.0°
ω scansh = 1818
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)]
k = 65
Tmin = 0.760, Tmax = 0.924l = 1010
4598 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1321 reflectionsΔρmax = 0.22 e Å3
104 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60335 (7)0.3954 (2)0.44159 (12)0.0126 (2)
C20.69611 (7)0.4590 (2)0.53168 (12)0.0131 (3)
C30.73560 (7)0.2904 (2)0.65438 (13)0.0138 (2)
H30.7020120.1436790.6840290.017*
C40.82336 (8)0.3353 (2)0.73326 (13)0.0153 (3)
H40.8494740.2223570.8180820.018*
C50.87261 (7)0.5469 (2)0.68695 (13)0.0143 (2)
C60.83471 (8)0.7161 (2)0.56450 (13)0.0152 (3)
H60.8690940.8599570.5333520.018*
C70.74606 (8)0.6729 (2)0.48814 (13)0.0143 (2)
H70.7193780.7896780.4058330.017*
Li10.50567 (13)0.1082 (4)0.3561 (2)0.0164 (4)
O10.56766 (5)0.18015 (16)0.47434 (9)0.0151 (2)
O20.56669 (5)0.55318 (15)0.33411 (9)0.0146 (2)
O30.96060 (5)0.57851 (16)0.76571 (10)0.0180 (2)
H3A0.9789 (12)0.735 (3)0.740 (2)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (5)0.0135 (5)0.0121 (5)0.0005 (4)0.0031 (4)0.0026 (4)
C20.0122 (5)0.0137 (5)0.0135 (5)0.0006 (4)0.0023 (4)0.0026 (4)
C30.0135 (5)0.0126 (5)0.0155 (5)0.0010 (4)0.0034 (4)0.0011 (4)
C40.0148 (5)0.0155 (5)0.0150 (5)0.0022 (4)0.0010 (4)0.0002 (4)
C50.0096 (5)0.0154 (5)0.0174 (5)0.0008 (4)0.0008 (4)0.0039 (4)
C60.0143 (5)0.0130 (5)0.0186 (5)0.0021 (4)0.0038 (4)0.0008 (4)
C70.0144 (5)0.0142 (5)0.0141 (5)0.0009 (4)0.0016 (4)0.0002 (4)
Li10.0154 (9)0.0154 (9)0.0178 (9)0.0006 (7)0.0015 (7)0.0006 (7)
O10.0134 (4)0.0150 (4)0.0164 (4)0.0034 (3)0.0016 (3)0.0000 (3)
O20.0135 (4)0.0148 (4)0.0147 (4)0.0013 (3)0.0001 (3)0.0003 (3)
O30.0108 (4)0.0174 (4)0.0243 (4)0.0015 (3)0.0021 (3)0.0003 (3)
Geometric parameters (Å, º) top
C1—C21.5011 (15)C6—H60.9500
C1—Li1i2.770 (2)C6—C71.3905 (16)
C1—O11.2601 (14)C7—H70.9500
C1—O21.2655 (14)Li1—Li1ii3.087 (2)
C2—C31.3977 (16)Li1—Li1i3.088 (2)
C2—C71.3942 (16)Li1—Li1iii2.702 (4)
C3—H30.9500Li1—O11.917 (2)
C3—C41.3871 (15)Li1—O1iii1.974 (2)
C4—H40.9500Li1—O2iv1.959 (2)
C4—C51.3879 (16)Li1—O2ii1.965 (2)
C5—C61.3913 (16)O3—H3A0.875 (15)
C5—O31.3804 (13)
C2—C1—Li1i145.11 (8)O1iii—Li1—C1ii110.62 (8)
O1—C1—C2117.30 (10)O1—Li1—C1ii129.26 (9)
O1—C1—Li1i89.36 (7)O1—Li1—Li1iii46.87 (6)
O1—C1—O2123.57 (10)O1iii—Li1—Li1ii106.77 (8)
O2—C1—C2119.08 (10)O1—Li1—Li1ii154.34 (13)
O2—C1—Li1i39.43 (6)O1iii—Li1—Li1iii45.16 (6)
C3—C2—C1119.35 (10)O1iii—Li1—Li1i126.13 (10)
C7—C2—C1121.17 (10)O1—Li1—Li1i70.13 (5)
C7—C2—C3119.34 (10)O1—Li1—O1iii92.04 (9)
C2—C3—H3119.7O1—Li1—O2ii105.54 (10)
C4—C3—C2120.63 (10)O1—Li1—O2iv121.37 (10)
C4—C3—H3119.7O2iv—Li1—C1ii97.58 (8)
C3—C4—H4120.4O2ii—Li1—C1ii24.15 (4)
C3—C4—C5119.29 (10)O2ii—Li1—Li1i38.04 (6)
C5—C4—H4120.4O2iv—Li1—Li1iii122.40 (12)
C4—C5—C6120.95 (10)O2iv—Li1—Li1ii38.17 (3)
O3—C5—C4117.13 (10)O2ii—Li1—Li1ii83.71 (10)
O3—C5—C6121.92 (10)O2ii—Li1—Li1iii117.83 (12)
C5—C6—H6120.3O2iv—Li1—Li1i129.86 (12)
C7—C6—C5119.40 (10)O2ii—Li1—O1iii112.26 (10)
C7—C6—H6120.3O2iv—Li1—O1iii103.17 (9)
C2—C7—H7119.8O2iv—Li1—O2ii119.03 (10)
C6—C7—C2120.37 (10)C1—O1—Li1136.40 (9)
C6—C7—H7119.8C1—O1—Li1iii128.43 (9)
C1ii—Li1—Li1ii60.42 (8)Li1—O1—Li1iii87.96 (9)
C1ii—Li1—Li1i59.73 (8)C1—O2—Li1v129.34 (9)
Li1iii—Li1—C1ii134.93 (12)C1—O2—Li1i116.42 (9)
Li1ii—Li1—Li1i109.69 (12)Li1v—O2—Li1i103.79 (6)
Li1iii—Li1—Li1ii148.24 (12)C5—O3—H3A107.0 (12)
Li1iii—Li1—Li1i100.92 (8)
C1—C2—C3—C4176.12 (9)Li1i—C1—C2—C735.0 (2)
C1—C2—C7—C6174.77 (10)Li1i—C1—O1—Li123.04 (14)
C2—C1—O1—Li1133.51 (12)Li1i—C1—O1—Li1iii117.10 (11)
C2—C1—O1—Li1iii86.36 (13)Li1i—C1—O2—Li1v138.71 (12)
C2—C1—O2—Li1v78.03 (14)O1—C1—C2—C34.74 (15)
C2—C1—O2—Li1i143.27 (10)O1—C1—C2—C7170.88 (10)
C2—C3—C4—C51.32 (16)O1—C1—O2—Li1i34.08 (14)
C3—C2—C7—C60.85 (16)O1—C1—O2—Li1v104.62 (13)
C3—C4—C5—C60.95 (17)O2—C1—C2—C3177.74 (9)
C3—C4—C5—O3178.04 (9)O2—C1—C2—C76.64 (15)
C4—C5—C6—C70.30 (17)O2—C1—O1—Li1iii96.24 (13)
C5—C6—C7—C21.20 (16)O2—C1—O1—Li143.89 (18)
C7—C2—C3—C40.43 (16)O3—C5—C6—C7179.25 (9)
Li1i—C1—C2—C3140.64 (13)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y1, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3vi0.88 (2)1.96 (2)2.8144 (7)166 (2)
Symmetry code: (vi) x+2, y+1/2, z+3/2.
catena-Poly[4-hydroxybenzoate [[diaquasodium]-di-µ-aqua]] (compound4) top
Crystal data top
[Na(H2O)4](C7H5O3)Z = 2
Mr = 232.16F(000) = 244
Triclinic, P1Dx = 1.447 Mg m3
a = 6.7058 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 6.8114 (2) ÅCell parameters from 2249 reflections
c = 12.5933 (3) Åθ = 3.6–75.1°
α = 83.361 (2)°µ = 1.47 mm1
β = 75.966 (2)°T = 100 K
γ = 72.945 (2)°Block, colourless
V = 532.89 (3) Å30.17 × 0.06 × 0.06 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
2117 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1704 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.058
ω scansθmax = 77.6°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 88
Tmin = 0.880, Tmax = 1.000k = 86
5395 measured reflectionsl = 1415
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.0981P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2117 reflectionsΔρmax = 0.25 e Å3
175 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0984 (3)0.2746 (3)0.78058 (15)0.0176 (4)
C20.1640 (3)0.2668 (3)0.65875 (15)0.0168 (4)
C30.1727 (3)0.0934 (3)0.60647 (16)0.0207 (4)
H30.1366580.0207010.6492160.025*
C40.2326 (3)0.0849 (3)0.49389 (17)0.0214 (4)
H40.2375890.0340600.4595700.026*
C50.2858 (3)0.2519 (3)0.43077 (15)0.0185 (4)
C60.2791 (3)0.4253 (3)0.48111 (15)0.0187 (4)
H60.3162590.5387240.4381840.022*
C70.2183 (3)0.4322 (3)0.59384 (15)0.0180 (4)
H70.2132660.5515040.6278610.022*
Na10.5000000.5000000.0000000.0168 (3)
Na20.5000000.0000000.0000000.0170 (3)
O10.3435 (3)0.2367 (2)0.31977 (11)0.0237 (3)
H10.382 (5)0.344 (4)0.287 (2)0.045 (8)*
O20.0348 (2)0.1259 (2)0.83432 (11)0.0206 (3)
O30.1083 (2)0.4275 (2)0.82552 (11)0.0201 (3)
O40.4864 (2)0.5284 (2)0.19805 (11)0.0196 (3)
H4A0.620 (3)0.513 (4)0.198 (3)0.040 (8)*
H4B0.427 (5)0.655 (3)0.211 (3)0.048 (9)*
O50.7418 (2)0.1782 (2)0.02872 (11)0.0186 (3)
H5A0.796 (5)0.112 (5)0.081 (2)0.049 (9)*
H5B0.851 (4)0.164 (5)0.026 (2)0.050 (9)*
O60.2340 (2)0.3222 (2)0.02328 (11)0.0183 (3)
H6A0.174 (4)0.348 (4)0.0327 (17)0.032 (7)*
H6B0.130 (4)0.372 (4)0.0757 (19)0.045 (9)*
O70.6662 (2)0.0585 (2)0.19245 (11)0.0205 (3)
H7A0.798 (3)0.048 (4)0.193 (2)0.040 (8)*
H7B0.667 (5)0.027 (4)0.236 (2)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (8)0.0215 (10)0.0161 (9)0.0046 (7)0.0043 (7)0.0006 (7)
C20.0157 (9)0.0203 (10)0.0155 (9)0.0059 (7)0.0039 (7)0.0015 (7)
C30.0243 (10)0.0189 (10)0.0192 (9)0.0090 (8)0.0026 (7)0.0010 (7)
C40.0284 (10)0.0180 (10)0.0204 (10)0.0098 (8)0.0050 (8)0.0028 (7)
C50.0228 (9)0.0194 (9)0.0137 (9)0.0072 (8)0.0036 (7)0.0000 (7)
C60.0244 (10)0.0170 (9)0.0169 (9)0.0093 (8)0.0058 (7)0.0031 (7)
C70.0206 (9)0.0181 (9)0.0172 (9)0.0073 (8)0.0050 (7)0.0015 (7)
Na10.0200 (5)0.0140 (5)0.0182 (5)0.0064 (4)0.0054 (4)0.0005 (4)
Na20.0196 (5)0.0143 (5)0.0174 (5)0.0061 (4)0.0030 (4)0.0005 (4)
O10.0385 (9)0.0233 (8)0.0126 (7)0.0162 (6)0.0021 (6)0.0015 (5)
O20.0218 (7)0.0240 (7)0.0167 (6)0.0093 (6)0.0038 (5)0.0028 (5)
O30.0212 (7)0.0235 (7)0.0165 (7)0.0071 (6)0.0034 (5)0.0038 (5)
O40.0228 (7)0.0183 (7)0.0182 (7)0.0073 (6)0.0040 (5)0.0001 (5)
O50.0204 (7)0.0181 (7)0.0172 (7)0.0054 (5)0.0043 (5)0.0001 (5)
O60.0199 (7)0.0182 (7)0.0168 (7)0.0051 (5)0.0050 (5)0.0002 (5)
O70.0254 (8)0.0194 (7)0.0188 (7)0.0081 (6)0.0054 (5)0.0035 (5)
Geometric parameters (Å, º) top
C1—C21.493 (3)Na1—O52.3622 (14)
C1—O21.273 (2)Na1—O6ii2.3805 (14)
C1—O31.267 (2)Na1—O62.3805 (14)
C2—C31.398 (3)Na2—O5iii2.4028 (14)
C2—C71.397 (3)Na2—O52.4028 (14)
C3—H30.9500Na2—O62.3839 (14)
C3—C41.380 (3)Na2—O6iii2.3839 (14)
C4—H40.9500Na2—O72.4499 (14)
C4—C51.395 (3)Na2—O7iii2.4499 (14)
C5—C61.388 (3)O1—H10.872 (18)
C5—O11.364 (2)O4—H4A0.868 (17)
C6—H60.9500O4—H4B0.853 (18)
C6—C71.381 (3)O5—H5A0.853 (18)
C7—H70.9500O5—H5B0.862 (18)
Na1—Na23.4057 (1)O6—H6A0.868 (17)
Na1—Na2i3.4057 (1)O6—H6B0.854 (18)
Na1—O4ii2.5015 (13)O7—H7A0.866 (17)
Na1—O42.5014 (13)O7—H7B0.845 (17)
Na1—O5ii2.3622 (14)
O2—C1—C2117.95 (17)O6—Na1—O6ii180.0
O3—C1—C2118.87 (17)Na1—Na2—Na1iv180.0
O3—C1—O2123.19 (17)O5—Na2—Na143.90 (3)
C3—C2—C1120.74 (17)O5iii—Na2—Na1iv43.90 (3)
C7—C2—C1121.09 (17)O5iii—Na2—Na1136.10 (3)
C7—C2—C3118.17 (17)O5—Na2—Na1iv136.10 (3)
C2—C3—H3119.4O5iii—Na2—O5180.0
C4—C3—C2121.20 (18)O5—Na2—O7iii98.02 (5)
C4—C3—H3119.4O5—Na2—O781.98 (5)
C3—C4—H4120.2O5iii—Na2—O798.02 (5)
C3—C4—C5119.62 (18)O5iii—Na2—O7iii81.98 (5)
C5—C4—H4120.2O6—Na2—Na144.33 (3)
C6—C5—C4120.09 (17)O6iii—Na2—Na1iv44.33 (3)
O1—C5—C4117.54 (17)O6iii—Na2—Na1135.67 (3)
O1—C5—C6122.38 (16)O6—Na2—Na1iv135.67 (3)
C5—C6—H6120.1O6—Na2—O5iii93.78 (5)
C7—C6—C5119.76 (17)O6—Na2—O586.22 (5)
C7—C6—H6120.1O6iii—Na2—O593.78 (5)
C2—C7—H7119.4O6iii—Na2—O5iii86.22 (5)
C6—C7—C2121.17 (18)O6—Na2—O6iii180.0
C6—C7—H7119.4O6iii—Na2—O782.23 (5)
Na2i—Na1—Na2180.0O6—Na2—O797.77 (5)
O4ii—Na1—Na2i100.49 (3)O6—Na2—O7iii82.23 (5)
O4—Na1—Na2100.49 (3)O6iii—Na2—O7iii97.77 (5)
O4—Na1—Na2i79.51 (3)O7iii—Na2—Na1100.47 (3)
O4ii—Na1—Na279.51 (3)O7iii—Na2—Na1iv79.53 (3)
O4—Na1—O4ii180.0O7—Na2—Na179.53 (3)
O5ii—Na1—Na2i44.86 (3)O7—Na2—Na1iv100.47 (3)
O5ii—Na1—Na2135.14 (3)O7—Na2—O7iii180.0
O5—Na1—Na244.86 (3)C5—O1—H1112 (2)
O5—Na1—Na2i135.14 (3)Na1—O4—H4A102 (2)
O5—Na1—O481.94 (5)Na1—O4—H4B105 (2)
O5—Na1—O4ii98.06 (5)H4A—O4—H4B103 (3)
O5ii—Na1—O4ii81.94 (5)Na1—O5—Na291.24 (5)
O5ii—Na1—O498.06 (5)Na1—O5—H5A137 (2)
O5ii—Na1—O5180.0Na1—O5—H5B107 (2)
O5ii—Na1—O6ii87.22 (5)Na2—O5—H5A106 (2)
O5—Na1—O6ii92.78 (5)Na2—O5—H5B111 (2)
O5ii—Na1—O692.78 (5)H5A—O5—H5B103 (3)
O5—Na1—O687.22 (5)Na1—O6—Na291.26 (5)
O6—Na1—Na2i135.59 (3)Na1—O6—H6A110.4 (18)
O6ii—Na1—Na2135.59 (3)Na1—O6—H6B110 (2)
O6—Na1—Na244.41 (3)Na2—O6—H6A108.3 (18)
O6ii—Na1—Na2i44.41 (3)Na2—O6—H6B134 (2)
O6—Na1—O4ii81.92 (5)H6A—O6—H6B102 (2)
O6—Na1—O498.08 (5)Na2—O7—H7A105 (2)
O6ii—Na1—O4ii98.08 (5)Na2—O7—H7B116 (2)
O6ii—Na1—O481.92 (5)H7A—O7—H7B107 (3)
C1—C2—C3—C4179.83 (18)C5—C6—C7—C20.3 (3)
C1—C2—C7—C6179.97 (18)C7—C2—C3—C40.1 (3)
C2—C3—C4—C50.1 (3)O1—C5—C6—C7179.63 (18)
C3—C2—C7—C60.1 (3)O2—C1—C2—C35.4 (3)
C3—C4—C5—C60.2 (3)O2—C1—C2—C7174.57 (17)
C3—C4—C5—O1179.82 (18)O3—C1—C2—C3174.60 (18)
C4—C5—C6—C70.4 (3)O3—C1—C2—C75.4 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.87 (2)1.77 (2)2.6296 (19)168 (3)
O4—H4A···O3v0.87 (2)1.93 (2)2.763 (2)160 (3)
O4—H4B···O7ii0.85 (2)1.87 (2)2.696 (2)162 (3)
O5—H5A···O2vi0.85 (2)2.04 (2)2.8490 (19)159 (3)
O5—H5B···O2vii0.86 (2)1.89 (2)2.728 (2)164 (3)
O6—H6A···O3viii0.87 (2)1.92 (2)2.7707 (19)165 (3)
O6—H6B···O3ix0.85 (2)2.03 (2)2.853 (2)162 (3)
O7—H7A···O2vii0.87 (2)1.93 (2)2.746 (2)157 (3)
O7—H7B···O1iii0.85 (2)1.90 (2)2.737 (2)174 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z1; (viii) x, y, z1; (ix) x, y+1, z+1.
Poly[di-µ-aqua-aqua-µ-4-hydroxybenzoato-potassium] (compound5) top
Crystal data top
[K(C7H5O3)(H2O)3]F(000) = 480
Mr = 230.26Dx = 1.592 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.34808 (14) ÅCell parameters from 4623 reflections
b = 11.25501 (14) Åθ = 3.6–77.1°
c = 7.07200 (8) ŵ = 4.94 mm1
β = 102.1980 (11)°T = 100 K
V = 960.66 (2) Å3Plate, colourless
Z = 40.31 × 0.24 × 0.08 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1952 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1878 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 77.6°, θmin = 3.7°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 714
Tmin = 0.509, Tmax = 1.000l = 88
6174 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.3384P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1952 reflectionsΔρmax = 0.46 e Å3
155 parametersΔρmin = 0.41 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22701 (12)0.62062 (13)0.5367 (2)0.0119 (3)
C20.35100 (12)0.61770 (13)0.5907 (2)0.0113 (3)
C30.40600 (12)0.52509 (13)0.7037 (2)0.0117 (3)
H30.3639320.4628540.7436540.014*
C40.52047 (12)0.52219 (13)0.7585 (2)0.0123 (3)
H40.5564210.4588930.8360480.015*
C50.58252 (12)0.61287 (13)0.6989 (2)0.0114 (3)
C60.52974 (12)0.70587 (14)0.5858 (2)0.0129 (3)
H60.5720980.7678300.5458250.015*
C70.41494 (12)0.70759 (13)0.5319 (2)0.0120 (3)
H70.3792060.7707770.4537790.014*
K10.00873 (2)0.82572 (3)0.58952 (4)0.01372 (13)
O10.14809 (9)0.80099 (11)0.80781 (17)0.0171 (2)
H1A0.2018 (16)0.7525 (18)0.784 (3)0.032 (6)*
H1B0.1759 (19)0.8618 (17)0.847 (3)0.033 (6)*
O20.01892 (9)1.06228 (10)0.77062 (16)0.0170 (3)
H2A0.0742 (16)1.039 (2)0.855 (3)0.042 (7)*
H2B0.0363 (15)1.054 (2)0.818 (3)0.032 (6)*
O30.17486 (8)0.53396 (9)0.59395 (15)0.0144 (2)
O40.17876 (9)0.70652 (10)0.44091 (15)0.0146 (2)
O50.69544 (9)0.61400 (10)0.74795 (16)0.0157 (2)
H50.7187 (19)0.5582 (18)0.820 (3)0.034 (6)*
O60.21382 (9)0.94426 (11)0.50855 (17)0.0162 (2)
H6A0.208 (2)0.967 (2)0.399 (4)0.029 (6)*
H6B0.218 (2)0.869 (3)0.502 (4)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (7)0.0119 (7)0.0090 (6)0.0005 (5)0.0019 (5)0.0031 (5)
C20.0125 (7)0.0127 (7)0.0085 (6)0.0002 (5)0.0018 (5)0.0019 (5)
C30.0133 (7)0.0110 (7)0.0109 (6)0.0015 (5)0.0032 (5)0.0004 (5)
C40.0142 (7)0.0114 (7)0.0110 (6)0.0007 (5)0.0017 (5)0.0002 (5)
C50.0110 (6)0.0140 (7)0.0091 (6)0.0018 (5)0.0016 (5)0.0031 (5)
C60.0148 (7)0.0126 (7)0.0114 (7)0.0022 (6)0.0029 (5)0.0003 (5)
C70.0145 (7)0.0112 (7)0.0101 (6)0.0012 (5)0.0024 (5)0.0002 (5)
K10.01343 (19)0.0155 (2)0.01222 (19)0.00090 (11)0.00259 (13)0.00010 (10)
O10.0150 (5)0.0140 (5)0.0229 (6)0.0014 (4)0.0052 (5)0.0035 (4)
O20.0120 (5)0.0229 (6)0.0154 (5)0.0000 (4)0.0015 (4)0.0040 (4)
O30.0122 (5)0.0130 (5)0.0178 (5)0.0022 (4)0.0026 (4)0.0000 (4)
O40.0119 (5)0.0151 (5)0.0152 (5)0.0008 (4)0.0007 (4)0.0014 (4)
O50.0109 (5)0.0157 (6)0.0186 (6)0.0012 (4)0.0007 (4)0.0033 (4)
O60.0172 (5)0.0156 (6)0.0148 (6)0.0013 (4)0.0012 (4)0.0006 (4)
Geometric parameters (Å, º) top
C1—C21.4980 (19)K1—O12.7338 (12)
C1—O31.2808 (18)K1—O2ii3.1669 (12)
C1—O41.2560 (19)K1—O2iii2.7973 (11)
C2—C31.399 (2)K1—O22.9456 (12)
C2—C71.400 (2)K1—H2A3.05 (3)
C3—H30.9500K1—O42.8714 (11)
C3—C41.385 (2)K1—O4iv2.9173 (11)
C4—H40.9500K1—O63.0222 (12)
C4—C51.394 (2)K1—H6B2.82 (3)
C5—C61.393 (2)O1—H1A0.848 (16)
C5—O51.3640 (17)O1—H1B0.838 (16)
C6—H60.9500O2—H2A0.847 (16)
C6—C71.388 (2)O2—H2B0.824 (16)
C7—H70.9500O5—H50.821 (16)
K1—K1i3.9253 (3)O6—H6A0.81 (3)
K1—O1i2.8499 (12)O6—H6B0.85 (3)
O3—C1—C2117.23 (13)O2ii—K1—H2A125.2 (4)
O4—C1—C2119.82 (13)O2iii—K1—O480.52 (3)
O4—C1—O3122.94 (13)O2iii—K1—O4iv139.38 (3)
C3—C2—C1120.59 (13)O2—K1—O673.91 (3)
C3—C2—C7118.17 (13)O2iii—K1—O664.82 (3)
C7—C2—C1121.24 (13)O2—K1—H6B88.9 (6)
C2—C3—H3119.3O2iii—K1—H6B70.3 (6)
C4—C3—C2121.41 (13)O2ii—K1—H6B113.3 (6)
C4—C3—H3119.3H2A—K1—H6B82.1 (7)
C3—C4—H4120.3O4—K1—K1i47.80 (2)
C3—C4—C5119.46 (13)O4iv—K1—K1i125.20 (2)
C5—C4—H4120.3O4—K1—O2127.89 (3)
C6—C5—C4120.23 (13)O4iv—K1—O2ii73.93 (3)
O5—C5—C4121.85 (13)O4—K1—O2ii79.18 (3)
O5—C5—C6117.91 (13)O4iv—K1—O277.59 (3)
C5—C6—H6120.2O4—K1—H2A118.3 (4)
C7—C6—C5119.68 (14)O4iv—K1—H2A61.6 (3)
C7—C6—H6120.2O4—K1—O4iv78.66 (3)
C2—C7—H7119.5O4—K1—O655.26 (3)
C6—C7—C2121.04 (13)O4iv—K1—O674.65 (3)
C6—C7—H7119.5O4iv—K1—H6B71.4 (5)
K1i—K1—H2A147.8 (5)O4—K1—H6B39.4 (6)
K1i—K1—H6B72.8 (6)O6—K1—K1i82.04 (2)
O1—K1—K1i126.82 (3)O6—K1—O2ii128.49 (3)
O1i—K1—K1i44.14 (2)O6—K1—H2A69.2 (4)
O1—K1—O1i83.46 (3)O6—K1—H6B16.2 (6)
O1—K1—O2ii65.94 (3)K1—O1—K1iv89.31 (3)
O1—K1—O279.44 (3)K1—O1—H1A124.8 (15)
O1i—K1—O2135.77 (3)K1iv—O1—H1A101.8 (16)
O1—K1—O2iii126.53 (3)K1—O1—H1B119.3 (17)
O1i—K1—O2ii69.37 (3)K1iv—O1—H1B116.4 (17)
O1i—K1—H2A151.3 (3)H1A—O1—H1B104 (2)
O1—K1—H2A82.0 (4)K1iii—O2—K1v82.07 (3)
O1i—K1—O4iv142.53 (3)K1—O2—K1v169.91 (4)
O1i—K1—O487.23 (3)K1iii—O2—K191.47 (3)
O1—K1—O4144.99 (3)K1iii—O2—H2A134.8 (17)
O1—K1—O4iv88.54 (3)K1—O2—H2A88.9 (18)
O1—K1—O6150.90 (3)K1v—O2—H2A101.2 (18)
O1i—K1—O6124.14 (3)K1—O2—H2B96.4 (16)
O1—K1—H6B158.7 (5)K1v—O2—H2B80.0 (16)
O1i—K1—H6B116.9 (6)K1iii—O2—H2B117.7 (16)
O2—K1—K1i140.90 (2)H2A—O2—H2B107 (2)
O2iii—K1—K1i53.04 (2)C1—O4—K1i122.51 (9)
O2ii—K1—K1i83.99 (2)C1—O4—K1117.55 (9)
O2iii—K1—O1i69.81 (3)K1—O4—K1i85.39 (3)
O2iii—K1—O2ii134.90 (3)C5—O5—H5110.8 (17)
O2—K1—O2ii135.071 (11)K1—O6—H6A114.3 (17)
O2iii—K1—O288.53 (3)K1—O6—H6B68.4 (18)
O2iii—K1—H2A99.8 (4)H6A—O6—H6B105 (2)
O2—K1—H2A16.1 (3)
C1—C2—C3—C4178.64 (13)C5—C6—C7—C20.6 (2)
C1—C2—C7—C6178.60 (13)C7—C2—C3—C40.7 (2)
C2—C1—O4—K1128.01 (11)O3—C1—C2—C31.7 (2)
C2—C1—O4—K1i128.99 (11)O3—C1—C2—C7178.97 (13)
C2—C3—C4—C50.5 (2)O3—C1—O4—K151.13 (17)
C3—C2—C7—C60.8 (2)O3—C1—O4—K1i51.87 (18)
C3—C4—C5—C60.3 (2)O4—C1—C2—C3177.51 (13)
C3—C4—C5—O5179.66 (13)O4—C1—C2—C71.8 (2)
C4—C5—C6—C70.3 (2)O5—C5—C6—C7179.62 (13)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x, y+2, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5vi0.85 (2)1.99 (2)2.8277 (16)168 (2)
O1—H1B···O3v0.84 (2)1.98 (2)2.7504 (16)152 (2)
O2—H2A···O3iv0.85 (2)2.05 (2)2.8721 (15)164 (2)
O2—H2B···O3v0.82 (2)1.96 (2)2.7771 (15)175 (2)
O5—H5···O6vii0.82 (2)1.84 (2)2.6562 (16)173 (2)
O6—H6A···O3i0.81 (3)2.11 (3)2.8796 (16)160 (2)
O6—H6B···O40.85 (3)1.92 (3)2.7365 (17)161 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+3/2; (vi) x1, y, z; (vii) x+1, y1/2, z+3/2.
Poly[µ-aqua-µ-4-hydroxybenzoato-potassium] (compound6) top
Crystal data top
[K(C7H5O3)(H2O)]Dx = 1.672 Mg m3
Mr = 194.23Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3124 reflections
a = 10.0126 (2) Åθ = 4.4–75.2°
b = 7.6695 (2) ŵ = 5.83 mm1
c = 20.0996 (4) ÅT = 100 K
V = 1543.48 (6) Å3Block, colourless
Z = 80.33 × 0.21 × 0.04 mm
F(000) = 800
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1615 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1439 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.072
ω scansθmax = 77.6°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 512
Tmin = 0.444, Tmax = 1.000k = 99
6496 measured reflectionsl = 2225
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.5528P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1615 reflectionsΔρmax = 0.61 e Å3
121 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5760 (2)0.7691 (3)0.42188 (11)0.0160 (5)
C20.5957 (2)0.7571 (3)0.34783 (11)0.0154 (5)
C30.7052 (2)0.6700 (3)0.32056 (11)0.0168 (5)
H30.7700540.6195130.3491840.020*
C40.7205 (2)0.6563 (3)0.25196 (11)0.0169 (5)
H40.7937260.5932740.2339260.020*
C50.6284 (2)0.7352 (3)0.20988 (11)0.0160 (5)
C60.5197 (2)0.8258 (3)0.23637 (11)0.0171 (5)
H60.4577300.8820650.2077530.020*
C70.5031 (2)0.8329 (3)0.30483 (11)0.0169 (5)
H70.4271880.8904330.3227590.020*
K10.72977 (6)0.49917 (5)0.54952 (2)0.0186 (2)
H3A0.572 (2)0.748 (4)0.1261 (18)0.035 (10)*
H4A0.462 (4)0.773 (4)0.0298 (12)0.041 (10)*
O10.67761 (16)0.7572 (2)0.45903 (8)0.0191 (4)
O20.45812 (17)0.7918 (2)0.44311 (8)0.0209 (4)
O30.64666 (16)0.7216 (2)0.14254 (8)0.0193 (4)
O40.44915 (18)0.8234 (2)0.06736 (9)0.0238 (4)
H4B0.368 (2)0.798 (5)0.0741 (19)0.047 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (10)0.0135 (9)0.0171 (11)0.0013 (8)0.0007 (8)0.0007 (7)
C20.0166 (9)0.0148 (10)0.0149 (11)0.0024 (8)0.0004 (8)0.0009 (7)
C30.0153 (9)0.0161 (10)0.0191 (10)0.0013 (8)0.0013 (8)0.0007 (8)
C40.0163 (11)0.0152 (10)0.0193 (11)0.0017 (8)0.0012 (8)0.0021 (8)
C50.0183 (10)0.0151 (10)0.0147 (10)0.0036 (8)0.0027 (8)0.0001 (7)
C60.0193 (11)0.0148 (10)0.0171 (10)0.0005 (8)0.0011 (8)0.0014 (8)
C70.0158 (10)0.0160 (10)0.0190 (10)0.0007 (8)0.0003 (8)0.0013 (8)
K10.0225 (4)0.0164 (4)0.0168 (4)0.00108 (16)0.00082 (17)0.00007 (14)
O10.0181 (8)0.0234 (9)0.0160 (8)0.0002 (6)0.0027 (6)0.0001 (6)
O20.0185 (8)0.0273 (8)0.0169 (8)0.0020 (7)0.0008 (6)0.0013 (6)
O30.0196 (8)0.0234 (8)0.0148 (8)0.0010 (6)0.0014 (6)0.0009 (6)
O40.0211 (8)0.0325 (10)0.0178 (8)0.0003 (7)0.0011 (6)0.0014 (7)
Geometric parameters (Å, º) top
C1—C21.504 (3)K1—K1i3.8561 (2)
C1—O11.266 (3)K1—K1ii5.0134 (11)
C1—O21.267 (3)K1—K1iii3.8561 (1)
C2—C31.396 (3)K1—O1iii2.7587 (17)
C2—C71.394 (3)K1—O12.7381 (17)
C3—H30.9500K1—O2iv2.7962 (19)
C3—C41.391 (3)K1—O2ii2.9227 (19)
C4—H40.9500K1—O3v2.8094 (17)
C4—C51.390 (3)K1—O3vi2.9622 (17)
C5—C61.396 (3)K1—O4vii3.2472 (19)
C5—O31.370 (3)K1—O4vi3.1424 (19)
C6—H60.9500O3—H3A0.839 (19)
C6—C71.387 (3)O4—H4A0.858 (18)
C7—H70.9500O4—H4B0.849 (19)
O1—C1—C2118.3 (2)O2ii—K1—K1ii55.34 (4)
O1—C1—O2124.1 (2)O2iv—K1—K1i49.01 (4)
O2—C1—C2117.6 (2)O2iv—K1—O2ii164.02 (6)
C3—C2—C1121.4 (2)O2ii—K1—O3vi109.83 (5)
C7—C2—C1120.0 (2)O2iv—K1—O3vi77.39 (5)
C7—C2—C3118.6 (2)O2iv—K1—O3v87.14 (5)
C2—C3—H3119.6O2iv—K1—O4vii136.67 (5)
C4—C3—C2120.8 (2)O2ii—K1—O4vii50.55 (5)
C4—C3—H3119.6O2iv—K1—O4vi118.48 (5)
C3—C4—H4120.1O2ii—K1—O4vi75.48 (5)
C5—C4—C3119.8 (2)O3v—K1—K1iii49.79 (3)
C5—C4—H4120.1O3v—K1—K1i123.58 (4)
C4—C5—C6120.1 (2)O3vi—K1—K1iii138.46 (3)
O3—C5—C4118.6 (2)O3v—K1—K1ii132.06 (4)
O3—C5—C6121.3 (2)O3vi—K1—K1ii89.48 (4)
C5—C6—H6120.3O3vi—K1—K1i46.41 (3)
C7—C6—C5119.4 (2)O3v—K1—O2ii77.85 (5)
C7—C6—H6120.3O3v—K1—O3vi98.01 (5)
C2—C7—H7119.4O3vi—K1—O4vii126.99 (5)
C6—C7—C2121.2 (2)O3vi—K1—O4vi50.49 (5)
C6—C7—H7119.4O3v—K1—O4vii118.31 (5)
K1i—K1—K1iii167.94 (3)O3v—K1—O4vi125.36 (5)
K1i—K1—K1ii95.388 (17)O4vi—K1—K1iii121.63 (4)
K1iii—K1—K1ii95.678 (18)O4vi—K1—K1i70.33 (4)
O1iii—K1—K1ii92.78 (4)O4vii—K1—K1ii37.58 (3)
O1—K1—K1ii63.86 (4)O4vii—K1—K1i118.08 (4)
O1—K1—K1i45.67 (4)O4vi—K1—K1ii39.06 (3)
O1iii—K1—K1iii45.24 (4)O4vii—K1—K1iii69.22 (3)
O1iii—K1—K1i129.32 (4)O4vi—K1—O4vii76.64 (5)
O1—K1—K1iii137.63 (4)C1—O1—K1126.69 (13)
O1—K1—O1iii96.45 (6)C1—O1—K1i127.65 (13)
O1iii—K1—O2iv98.38 (5)K1—O1—K1i89.09 (5)
O1iii—K1—O2ii74.70 (5)C1—O2—K1viii149.12 (15)
O1—K1—O2iv77.10 (5)C1—O2—K1ii120.78 (14)
O1—K1—O2ii117.57 (5)K1viii—O2—K1ii84.76 (5)
O1iii—K1—O3vi175.42 (5)C5—O3—K1ix139.68 (14)
O1iii—K1—O3v83.42 (5)C5—O3—K1x127.30 (12)
O1—K1—O3vi80.97 (5)C5—O3—H3A105 (3)
O1—K1—O3v164.07 (5)K1ix—O3—K1x83.80 (4)
O1iii—K1—O4vii55.20 (5)K1ix—O3—H3A106 (3)
O1iii—K1—O4vi131.84 (5)K1x—O3—H3A80 (2)
O1—K1—O4vii73.40 (5)K1x—O4—K1xi103.36 (5)
O1—K1—O4vi65.94 (5)K1x—O4—H4A88 (2)
O2iv—K1—K1iii118.96 (5)K1xi—O4—H4A68 (3)
O2iv—K1—K1ii140.36 (4)K1x—O4—H4B167 (3)
O2ii—K1—K1iii46.23 (4)K1xi—O4—H4B71 (3)
O2ii—K1—K1i145.79 (4)H4A—O4—H4B100 (3)
C1—C2—C3—C4178.44 (19)C5—C6—C7—C22.6 (3)
C1—C2—C7—C6179.14 (19)C6—C5—O3—K1x71.6 (2)
C2—C1—O1—K1115.57 (18)C6—C5—O3—K1ix154.95 (16)
C2—C1—O1—K1i121.07 (17)C7—C2—C3—C41.1 (3)
C2—C1—O2—K1ii78.7 (2)O1—C1—C2—C325.0 (3)
C2—C1—O2—K1viii63.4 (3)O1—C1—C2—C7155.4 (2)
C2—C3—C4—C52.2 (3)O1—C1—O2—K1ii101.8 (2)
C3—C2—C7—C61.3 (3)O1—C1—O2—K1viii116.1 (3)
C3—C4—C5—C60.9 (3)O2—C1—C2—C3155.5 (2)
C3—C4—C5—O3179.20 (19)O2—C1—C2—C724.1 (3)
C4—C5—C6—C71.4 (3)O2—C1—O1—K1i58.4 (3)
C4—C5—O3—K1ix24.9 (3)O2—C1—O1—K164.9 (3)
C4—C5—O3—K1x108.52 (19)O3—C5—C6—C7178.44 (19)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+1, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x1/2, y+3/2, z+1; (ix) x+3/2, y+1, z1/2; (x) x, y+3/2, z1/2; (xi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.84 (2)1.80 (2)2.609 (2)160 (4)
O4—H4A···O2x0.86 (2)1.81 (2)2.651 (2)165 (4)
O4—H4B···O1xii0.85 (2)2.04 (3)2.816 (2)152 (4)
Symmetry codes: (x) x, y+3/2, z1/2; (xii) x1/2, y, z+1/2.
Poly[aqua-µ-4-hydroxybenzoato-rubidium] (compound7) top
Crystal data top
[Rb(C7H5O3)(H2O)]F(000) = 472
Mr = 240.60Dx = 1.993 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.1069 (1) ÅCell parameters from 3699 reflections
b = 10.0060 (1) Åθ = 4.4–77.5°
c = 8.0198 (1) ŵ = 8.30 mm1
β = 98.557 (1)°T = 100 K
V = 802.01 (2) Å3Irregular, colourless
Z = 40.47 × 0.15 × 0.05 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1615 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1543 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
ω scansθmax = 77.8°, θmin = 4.4°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 1112
Tmin = 0.121, Tmax = 1.000k = 124
5073 measured reflectionsl = 109
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3905P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1615 reflectionsΔρmax = 0.42 e Å3
121 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8432 (2)0.4252 (2)0.2774 (3)0.0119 (4)
C20.7001 (2)0.4090 (2)0.3035 (3)0.0118 (4)
C30.6619 (2)0.3106 (2)0.4105 (3)0.0128 (4)
H30.7271200.2505480.4652070.015*
C40.5296 (2)0.2995 (2)0.4379 (3)0.0128 (4)
H40.5055020.2346760.5145410.015*
C50.4329 (2)0.3837 (2)0.3527 (3)0.0117 (4)
C60.4690 (2)0.4815 (2)0.2440 (3)0.0129 (4)
H60.4028650.5382720.1844460.015*
C70.6024 (2)0.4953 (2)0.2235 (3)0.0128 (4)
H70.6275090.5646900.1537700.015*
O10.91846 (16)0.32447 (16)0.2957 (2)0.0150 (3)
O20.87982 (16)0.53978 (16)0.2367 (2)0.0152 (3)
O30.30312 (16)0.36839 (16)0.3794 (2)0.0146 (3)
H3A0.261 (3)0.438 (3)0.343 (5)0.043 (11)*
O41.14079 (17)0.05174 (17)0.7258 (2)0.0182 (4)
H4A1.060 (2)0.039 (3)0.740 (4)0.037 (10)*
H4B1.144 (4)0.1367 (19)0.724 (5)0.042 (11)*
Rb11.11394 (2)0.21842 (2)0.55431 (3)0.01330 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0151 (11)0.0124 (11)0.0081 (10)0.0005 (8)0.0012 (8)0.0020 (7)
C20.0134 (10)0.0097 (10)0.0120 (10)0.0015 (8)0.0007 (8)0.0031 (8)
C30.0159 (11)0.0090 (9)0.0129 (10)0.0020 (8)0.0010 (9)0.0001 (8)
C40.0164 (11)0.0105 (9)0.0118 (11)0.0007 (8)0.0030 (9)0.0001 (8)
C50.0121 (10)0.0113 (10)0.0116 (10)0.0024 (8)0.0015 (8)0.0045 (7)
C60.0153 (10)0.0099 (10)0.0131 (10)0.0025 (8)0.0009 (8)0.0009 (8)
C70.0147 (10)0.0100 (10)0.0140 (10)0.0012 (8)0.0026 (8)0.0002 (8)
O10.0137 (8)0.0121 (7)0.0196 (8)0.0015 (6)0.0034 (6)0.0012 (6)
O20.0144 (8)0.0103 (7)0.0213 (8)0.0003 (6)0.0037 (6)0.0023 (6)
O30.0121 (8)0.0140 (8)0.0180 (8)0.0009 (6)0.0034 (6)0.0009 (6)
O40.0147 (8)0.0121 (9)0.0283 (9)0.0002 (6)0.0049 (7)0.0003 (6)
Rb10.01645 (16)0.01179 (16)0.01185 (16)0.00043 (6)0.00272 (10)0.00058 (6)
Geometric parameters (Å, º) top
C1—C21.500 (3)O1—Rb1i2.9957 (16)
C1—O11.258 (3)O2—Rb1ii2.9388 (16)
C1—O21.263 (3)O2—Rb1iii2.9476 (16)
C2—C31.397 (3)O3—H3A0.846 (19)
C2—C71.394 (3)O3—Rb1iv2.9453 (16)
C3—H30.9500O3—Rb1v3.1181 (16)
C3—C41.391 (3)O4—H4A0.852 (18)
C4—H40.9500O4—H4B0.851 (18)
C4—C51.390 (3)O4—Rb13.0267 (18)
C5—C61.395 (3)O4—Rb1vi3.5687 (18)
C5—O31.369 (3)Rb1—H4A3.06 (3)
C6—H60.9500Rb1—Rb1vi4.9570 (4)
C6—C71.389 (3)Rb1—Rb1vii4.0594 (1)
C7—H70.9500Rb1—Rb1i4.0594 (1)
O1—Rb12.8480 (16)
O1—C1—C2118.4 (2)O1—Rb1—Rb1vii124.01 (3)
O1—C1—O2124.2 (2)O1—Rb1—Rb1i47.52 (3)
O2—C1—C2117.4 (2)O1vii—Rb1—Rb1vii44.52 (3)
C3—C2—C1121.4 (2)O1—Rb1—Rb1vi86.95 (3)
C7—C2—C1120.0 (2)O2viii—Rb1—O1vii121.24 (4)
C7—C2—C3118.5 (2)O2ii—Rb1—O1vii73.11 (4)
C2—C3—H3119.6O2ii—Rb1—O2viii161.75 (5)
C4—C3—C2120.9 (2)O2ii—Rb1—O3ix78.11 (4)
C4—C3—H3119.6O2viii—Rb1—O3ix114.22 (4)
C3—C4—H4120.1O2ii—Rb1—O3x83.79 (4)
C5—C4—C3119.7 (2)O2ii—Rb1—O4vi134.11 (4)
C5—C4—H4120.1O2viii—Rb1—O478.88 (5)
C4—C5—C6120.2 (2)O2viii—Rb1—O4vi46.89 (4)
O3—C5—C4118.40 (19)O2ii—Rb1—O4118.90 (5)
O3—C5—C6121.4 (2)O2viii—Rb1—H4A84.3 (6)
C5—C6—H6120.3O2ii—Rb1—H4A113.9 (6)
C7—C6—C5119.5 (2)O2viii—Rb1—Rb1vi52.43 (3)
C7—C6—H6120.3O2viii—Rb1—Rb1vii151.59 (3)
C2—C7—H7119.4O2ii—Rb1—Rb1vii46.49 (3)
C6—C7—C2121.2 (2)O2viii—Rb1—Rb1i46.31 (3)
C6—C7—H7119.4O2ii—Rb1—Rb1i115.60 (3)
C1—O1—Rb1i119.00 (13)O2ii—Rb1—Rb1vi142.77 (3)
C1—O1—Rb1136.50 (14)O3x—Rb1—O1vii156.66 (4)
Rb1—O1—Rb1i87.96 (4)O3x—Rb1—O2viii80.79 (4)
C1—O2—Rb1ii125.60 (14)O3x—Rb1—O3ix100.34 (5)
C1—O2—Rb1iii142.86 (14)O3ix—Rb1—O4vi133.73 (4)
Rb1ii—O2—Rb1iii87.20 (4)O3x—Rb1—O4130.60 (5)
C5—O3—H3A107 (3)O3x—Rb1—O4vi113.39 (4)
C5—O3—Rb1v112.54 (13)O3ix—Rb1—H4A59.4 (6)
C5—O3—Rb1iv146.77 (13)O3x—Rb1—H4A146.6 (3)
Rb1iv—O3—H3A105 (3)O3x—Rb1—Rb1i49.81 (3)
Rb1v—O3—H3A74 (3)O3x—Rb1—Rb1vii119.12 (3)
Rb1iv—O3—Rb1v84.00 (4)O3ix—Rb1—Rb1vii46.19 (3)
H4A—O4—H4B101 (3)O3ix—Rb1—Rb1i141.18 (3)
Rb1—O4—H4A84 (2)O3ix—Rb1—Rb1vi96.45 (3)
Rb1vi—O4—H4A62 (2)O3x—Rb1—Rb1vi133.09 (3)
Rb1vi—O4—H4B63 (3)O4—Rb1—O3ix50.87 (5)
Rb1—O4—H4B152 (3)O4—Rb1—O4vi82.89 (5)
Rb1—O4—Rb1vi97.12 (5)O4—Rb1—H4A16.1 (3)
O1—Rb1—O1vii94.08 (5)O4vi—Rb1—H4A75.4 (6)
O1—Rb1—O2viii75.15 (5)O4—Rb1—Rb1i125.08 (4)
O1—Rb1—O2ii93.57 (5)O4vi—Rb1—Rb1vii126.05 (3)
O1—Rb1—O3ix170.14 (4)O4—Rb1—Rb1vii72.75 (4)
O1vii—Rb1—O3ix78.53 (4)O4vi—Rb1—Rb1i63.70 (3)
O1—Rb1—O3x83.83 (5)O4vi—Rb1—Rb1vi37.29 (3)
O1vii—Rb1—O466.52 (5)O4—Rb1—Rb1vi45.59 (3)
O1—Rb1—O4vi50.09 (4)Rb1vii—Rb1—H4A68.0 (6)
O1vii—Rb1—O4vi81.75 (4)Rb1i—Rb1—H4A129.5 (6)
O1—Rb1—O4132.01 (5)Rb1vi—Rb1—H4A39.8 (6)
O1vii—Rb1—H4A51.9 (4)Rb1i—Rb1—Rb1vi91.831 (6)
O1—Rb1—H4A120.8 (5)Rb1vii—Rb1—Rb1vi104.039 (7)
O1vii—Rb1—Rb1i139.26 (3)Rb1i—Rb1—Rb1vii162.087 (11)
O1vii—Rb1—Rb1vi69.72 (3)
C1—C2—C3—C4177.9 (2)C5—C6—C7—C23.0 (3)
C1—C2—C7—C6179.2 (2)C6—C5—O3—Rb1v64.3 (2)
C2—C1—O1—Rb198.7 (2)C6—C5—O3—Rb1iv179.55 (16)
C2—C1—O1—Rb1i139.62 (15)C7—C2—C3—C40.6 (3)
C2—C1—O2—Rb1iii84.0 (3)O1—C1—C2—C327.3 (3)
C2—C1—O2—Rb1ii63.8 (2)O1—C1—C2—C7154.3 (2)
C2—C3—C4—C52.6 (3)O1—C1—O2—Rb1iii95.3 (3)
C3—C2—C7—C62.3 (3)O1—C1—O2—Rb1ii116.9 (2)
C3—C4—C5—C61.9 (3)O2—C1—C2—C3153.4 (2)
C3—C4—C5—O3178.5 (2)O2—C1—C2—C725.0 (3)
C4—C5—C6—C70.9 (3)O2—C1—O1—Rb1i39.7 (3)
C4—C5—O3—Rb1iv0.9 (4)O2—C1—O1—Rb182.0 (3)
C4—C5—O3—Rb1v116.19 (18)O3—C5—C6—C7178.6 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1, y+1/2, z1/2; (vi) x+2, y, z+1; (vii) x, y+1/2, z+1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y+1/2, z+1/2; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4v0.85 (2)1.82 (2)2.641 (2)163 (4)
O4—H4A···O2vii0.85 (2)1.82 (2)2.655 (2)168 (3)
O4—H4B···O1vi0.85 (2)1.98 (2)2.794 (2)159 (3)
Symmetry codes: (v) x1, y+1/2, z1/2; (vi) x+2, y, z+1; (vii) x, y+1/2, z+1/2.
Poly[aqua-µ-4-hydroxybenzoato-caesium] (compound8) top
Crystal data top
[Cs(C7H5O3)(H2O)]F(000) = 544
Mr = 288.04Dx = 2.220 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1271 (2) ÅCell parameters from 11750 reflections
b = 10.1220 (2) Åθ = 2.9–40.4°
c = 8.6270 (1) ŵ = 4.27 mm1
β = 102.953 (2)°T = 100 K
V = 861.82 (3) Å3Block, colourless
Z = 40.34 × 0.23 × 0.13 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
4758 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
θmax = 40.9°, θmin = 2.9°
Tmin = 0.666, Tmax = 1.000h = 1818
22548 measured reflectionsk = 1817
5490 independent reflectionsl = 1515
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5490 reflectionsΔρmax = 0.81 e Å3
121 parametersΔρmin = 1.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16018 (14)0.57983 (14)0.74442 (17)0.0105 (2)
C20.29933 (13)0.59178 (14)0.71097 (16)0.0096 (2)
C30.32713 (14)0.68511 (14)0.60259 (17)0.0107 (2)
H30.2581510.7447370.5527320.013*
C40.45418 (14)0.69165 (15)0.56706 (17)0.0112 (2)
H40.4709910.7534740.4908970.013*
C50.55699 (14)0.60697 (14)0.64379 (17)0.0103 (2)
C60.53170 (15)0.51490 (14)0.75464 (18)0.0120 (2)
H60.6021340.4586530.8089130.014*
C70.40283 (14)0.50637 (14)0.78474 (18)0.0120 (2)
H70.3847770.4413720.8566910.014*
Cs10.12796 (2)0.77191 (2)0.43555 (2)0.01222 (3)
H3A0.726 (3)0.548 (2)0.641 (4)0.052 (10)*
O10.08291 (11)0.67982 (12)0.72008 (15)0.01420 (19)
O20.12747 (11)0.46970 (11)0.79294 (15)0.01449 (19)
O30.68123 (11)0.61658 (11)0.60704 (14)0.01338 (19)
O40.14103 (12)1.05476 (12)0.26162 (17)0.0175 (2)
H4A0.152 (4)1.1351 (19)0.241 (4)0.078 (13)*
H4B0.0561 (17)1.040 (3)0.273 (3)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0094 (5)0.0103 (5)0.0118 (5)0.0003 (4)0.0026 (4)0.0004 (4)
C20.0087 (5)0.0090 (5)0.0114 (5)0.0003 (4)0.0030 (4)0.0000 (4)
C30.0101 (5)0.0092 (5)0.0128 (5)0.0007 (4)0.0027 (4)0.0014 (4)
C40.0120 (5)0.0101 (5)0.0121 (5)0.0001 (4)0.0039 (4)0.0013 (4)
C50.0092 (5)0.0107 (5)0.0115 (5)0.0009 (4)0.0033 (4)0.0009 (4)
C60.0100 (5)0.0121 (6)0.0142 (6)0.0018 (4)0.0032 (4)0.0035 (4)
C70.0120 (5)0.0110 (6)0.0133 (6)0.0009 (4)0.0036 (4)0.0034 (4)
Cs10.01537 (4)0.01175 (5)0.01031 (4)0.00001 (3)0.00450 (3)0.00063 (2)
O10.0113 (4)0.0113 (4)0.0208 (5)0.0028 (4)0.0054 (4)0.0012 (4)
O20.0116 (4)0.0114 (4)0.0212 (5)0.0001 (4)0.0052 (4)0.0039 (4)
O30.0097 (4)0.0134 (5)0.0183 (5)0.0000 (4)0.0058 (4)0.0010 (4)
O40.0103 (4)0.0123 (5)0.0297 (6)0.0000 (4)0.0040 (4)0.0006 (4)
Geometric parameters (Å, º) top
C1—C21.5053 (19)C7—H70.9500
C1—Cs1i3.8685 (14)Cs1—Cs1iii4.3362 (1)
C1—O11.2678 (18)Cs1—Cs1iv4.3363 (1)
C1—O21.2608 (18)Cs1—O13.0173 (12)
C2—C31.401 (2)Cs1—O1iv3.1676 (12)
C2—C71.3971 (19)Cs1—O2v3.0805 (12)
C3—H30.9500Cs1—O2i3.1417 (12)
C3—C41.390 (2)Cs1—O3vi3.1107 (11)
C4—H40.9500Cs1—O3vii3.2534 (12)
C4—C51.396 (2)Cs1—O4viii3.7594 (13)
C5—C61.399 (2)Cs1—O43.2213 (13)
C5—Cs1ii3.7971 (14)Cs1—H4B3.21 (3)
C5—O31.3682 (17)O3—H3A0.844 (17)
C6—H60.9500O4—H4A0.835 (18)
C6—C71.389 (2)O4—H4B0.857 (16)
C2—C1—Cs1i89.74 (8)O2v—Cs1—Cs1iv145.34 (2)
O1—C1—C2118.27 (13)O2i—Cs1—Cs1iv45.24 (2)
O1—C1—Cs1i132.45 (9)O2i—Cs1—Cs1iii123.01 (2)
O2—C1—C2117.49 (12)O2v—Cs1—O1iv117.36 (3)
O2—C1—Cs1i46.75 (8)O2i—Cs1—O1iv69.87 (3)
O2—C1—O1124.23 (13)O2v—Cs1—O2i169.42 (3)
C3—C2—C1121.25 (12)O2i—Cs1—O3vii78.91 (3)
C7—C2—C1120.13 (13)O2v—Cs1—O3vi82.08 (3)
C7—C2—C3118.60 (13)O2v—Cs1—O3vii109.65 (3)
C2—C3—H3119.5O2i—Cs1—O4viii134.14 (3)
C4—C3—C2120.91 (13)O2v—Cs1—O4viii44.84 (3)
C4—C3—H3119.5O2i—Cs1—O4113.91 (3)
C3—C4—H4120.2O2v—Cs1—O476.67 (3)
C3—C4—C5119.69 (13)O2i—Cs1—H4B110.6 (5)
C5—C4—H4120.2O2v—Cs1—H4B79.7 (5)
C4—C5—C6120.11 (13)O3vi—Cs1—C1i73.75 (3)
C4—C5—Cs1ii122.87 (9)O3vii—Cs1—C1i89.40 (3)
C6—C5—Cs1ii90.99 (9)O3vi—Cs1—C5vii87.66 (3)
O3—C5—C4118.26 (13)O3vii—Cs1—C5vii20.58 (3)
O3—C5—C6121.63 (13)O3vi—Cs1—Cs1iii48.45 (2)
O3—C5—Cs1ii56.69 (7)O3vii—Cs1—Cs1iii140.32 (2)
C5—C6—H6120.2O3vii—Cs1—Cs1iv45.69 (2)
C7—C6—C5119.51 (13)O3vi—Cs1—Cs1iv124.05 (2)
C7—C6—H6120.2O3vi—Cs1—O1iv158.34 (3)
C2—C7—H7119.4O3vi—Cs1—O2i89.62 (3)
C6—C7—C2121.11 (13)O3vi—Cs1—O3vii106.18 (3)
C6—C7—H7119.4O3vii—Cs1—O4viii129.78 (3)
C1i—Cs1—Cs1iii106.63 (2)O3vi—Cs1—O4viii109.63 (3)
C1i—Cs1—Cs1iv61.67 (2)O3vi—Cs1—O4134.89 (3)
C1i—Cs1—H4B127.6 (5)O3vi—Cs1—H4B149.4 (3)
C5vii—Cs1—C1i92.77 (3)O3vii—Cs1—H4B58.4 (4)
C5vii—Cs1—Cs1iv63.96 (2)O4—Cs1—C1i129.80 (3)
C5vii—Cs1—Cs1iii120.34 (2)O4viii—Cs1—C1i133.72 (3)
C5vii—Cs1—H4B71.2 (3)O4—Cs1—C5vii57.56 (3)
Cs1iii—Cs1—Cs1iv168.256 (5)O4viii—Cs1—C5vii132.87 (3)
Cs1iv—Cs1—H4B66.5 (5)O4viii—Cs1—Cs1iii61.19 (2)
Cs1iii—Cs1—H4B124.8 (5)O4—Cs1—Cs1iv68.70 (3)
O1—Cs1—C1i91.31 (3)O4viii—Cs1—Cs1iv125.27 (2)
O1iv—Cs1—C1i85.05 (3)O4—Cs1—Cs1iii123.03 (3)
O1iv—Cs1—C5vii97.93 (3)O4—Cs1—O3vii48.05 (3)
O1—Cs1—C5vii167.24 (3)O4—Cs1—O4viii81.76 (3)
O1iv—Cs1—Cs1iii138.58 (2)O4—Cs1—H4B15.3 (3)
O1—Cs1—Cs1iv128.30 (2)O4viii—Cs1—H4B73.1 (4)
O1iv—Cs1—Cs1iv44.09 (2)C1—O1—Cs1132.80 (10)
O1—Cs1—Cs1iii46.92 (2)C1—O1—Cs1iii119.88 (10)
O1—Cs1—O1iv94.46 (3)Cs1—O1—Cs1iii88.99 (3)
O1—Cs1—O2i99.76 (3)C1—O2—Cs1ix150.61 (10)
O1—Cs1—O2v72.66 (3)C1—O2—Cs1i116.26 (10)
O1iv—Cs1—O3vii77.42 (3)Cs1ix—O2—Cs1i88.35 (3)
O1—Cs1—O3vi81.88 (3)C5—O3—Cs1ii102.73 (8)
O1—Cs1—O3vii171.76 (3)C5—O3—Cs1x147.96 (9)
O1—Cs1—O4viii46.24 (3)C5—O3—H3A108 (2)
O1—Cs1—O4126.96 (3)Cs1x—O3—Cs1ii85.87 (3)
O1iv—Cs1—O4viii81.78 (3)Cs1x—O3—H3A104 (2)
O1iv—Cs1—O463.40 (3)Cs1ii—O3—H3A80 (2)
O1iv—Cs1—H4B50.6 (4)Cs1—O4—Cs1viii98.24 (3)
O1—Cs1—H4B115.3 (4)Cs1viii—O4—H4A75 (2)
O2i—Cs1—C1i16.99 (3)Cs1—O4—H4A163 (3)
O2v—Cs1—C1i152.73 (3)Cs1—O4—H4B81.7 (18)
O2i—Cs1—C5vii87.40 (3)Cs1viii—O4—H4B56.5 (19)
O2v—Cs1—C5vii98.75 (3)H4A—O4—H4B106 (3)
O2v—Cs1—Cs1iii46.41 (2)
C1—C2—C3—C4177.13 (13)C7—C2—C3—C41.0 (2)
C1—C2—C7—C6179.47 (14)Cs1i—C1—C2—C3115.39 (12)
C2—C1—O1—Cs1iii147.96 (10)Cs1i—C1—C2—C762.66 (13)
C2—C1—O1—Cs191.74 (15)Cs1i—C1—O1—Cs1iii93.04 (12)
C2—C1—O2—Cs1i60.22 (14)Cs1i—C1—O1—Cs127.26 (19)
C2—C1—O2—Cs1ix83.9 (2)Cs1i—C1—O2—Cs1ix144.1 (2)
C2—C3—C4—C52.0 (2)Cs1ii—C5—C6—C7131.16 (13)
C3—C2—C7—C61.4 (2)Cs1ii—C5—O3—Cs1x102.81 (16)
C3—C4—C5—C60.7 (2)O1—C1—C2—C324.4 (2)
C3—C4—C5—Cs1ii112.77 (13)O1—C1—C2—C7157.53 (14)
C3—C4—C5—O3179.51 (13)O1—C1—O2—Cs1ix97.1 (2)
C4—C5—C6—C71.5 (2)O1—C1—O2—Cs1i118.73 (14)
C4—C5—O3—Cs1ii112.59 (12)O2—C1—C2—C3154.60 (14)
C4—C5—O3—Cs1x9.8 (2)O2—C1—C2—C723.5 (2)
C5—C6—C7—C22.6 (2)O2—C1—O1—Cs187.20 (18)
C6—C5—O3—Cs1x170.46 (12)O2—C1—O1—Cs1iii33.10 (19)
C6—C5—O3—Cs1ii67.65 (14)O3—C5—C6—C7178.21 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+3/2; (vi) x1, y, z; (vii) x1, y+3/2, z1/2; (viii) x, y+2, z+1; (ix) x, y1/2, z+3/2; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4ii0.84 (2)1.83 (2)2.6363 (17)159 (3)
O4—H4A···O1viii0.84 (2)2.00 (3)2.7472 (17)148 (3)
O4—H4B···O2iv0.86 (2)1.83 (2)2.6830 (16)173 (3)
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (viii) x, y+2, z+1.
Poly[[µ-aqua-aqua(µ-4-hydroxybenzoato)(4-hydroxybenzoic acid)sodium] monohydrate] (compound9) top
Crystal data top
[Na(C7H5O3)(C7H6O3)(H2O)2]·H2OF(000) = 736
Mr = 352.26Dx = 1.518 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.6704 (2) ÅCell parameters from 3237 reflections
b = 10.1413 (3) Åθ = 4.9–76.2°
c = 19.8263 (4) ŵ = 1.34 mm1
β = 92.001 (2)°T = 100 K
V = 1541.31 (8) Å3Block, colourless
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
3135 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2564 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
ω scansθmax = 77.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 99
Tmin = 0.476, Tmax = 1.000k = 1211
10034 measured reflectionsl = 2419
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.074P)2 + 0.5167P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3135 reflectionsΔρmax = 0.36 e Å3
253 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8126 (3)0.5917 (2)0.58331 (10)0.0166 (5)
C20.8426 (3)0.5764 (2)0.65833 (9)0.0148 (4)
C30.9300 (3)0.6751 (2)0.69473 (10)0.0154 (4)
H30.9722020.7503470.6718720.019*
C40.9561 (3)0.6644 (2)0.76463 (10)0.0162 (4)
H41.0178260.7310980.7892110.019*
C50.8911 (3)0.5556 (2)0.79772 (9)0.0149 (4)
C60.8025 (3)0.4571 (2)0.76189 (10)0.0159 (4)
H60.7570090.3833400.7849930.019*
H3A0.962 (6)0.609 (3)0.881 (2)0.064 (13)*
H50.263 (7)0.503 (5)0.5312 (12)0.096 (18)*
H7A0.597 (3)0.689 (3)0.4298 (15)0.027 (8)*
H7B0.446 (4)0.701 (3)0.4607 (17)0.046 (10)*
H8A0.762 (4)1.011 (3)0.4546 (14)0.036 (9)*
H8B0.764 (4)1.103 (2)0.5003 (13)0.024 (7)*
C70.7806 (3)0.4668 (2)0.69231 (10)0.0158 (4)
H70.7229620.3981610.6677030.019*
C80.3439 (3)0.5843 (2)0.60258 (10)0.0170 (5)
C90.3603 (3)0.5748 (2)0.67754 (10)0.0152 (4)
C100.4472 (3)0.6750 (2)0.71332 (10)0.0164 (5)
H100.4942190.7475020.6896270.020*
C110.4657 (3)0.6700 (2)0.78326 (10)0.0164 (5)
H110.5251810.7383680.8073710.020*
C120.3964 (3)0.5638 (2)0.81750 (10)0.0163 (4)
C130.3089 (3)0.4635 (2)0.78256 (10)0.0168 (5)
H130.2615800.3913290.8063640.020*
C140.2910 (3)0.4694 (2)0.71256 (10)0.0168 (5)
H140.2311560.4010260.6885690.020*
Na10.58830 (12)0.86068 (9)0.54744 (4)0.0179 (2)
O10.8229 (2)0.70291 (17)0.55722 (7)0.0195 (4)
O20.7772 (2)0.48548 (16)0.55035 (7)0.0205 (4)
O30.9126 (2)0.53871 (17)0.86634 (7)0.0190 (4)
O40.4007 (2)0.67820 (17)0.57137 (7)0.0204 (4)
O50.2657 (2)0.48325 (16)0.57341 (7)0.0193 (4)
O60.4104 (2)0.55357 (18)0.88600 (7)0.0218 (4)
H6A0.465 (4)0.620 (3)0.9031 (17)0.041 (9)*
O70.5158 (2)0.74363 (17)0.43723 (7)0.0208 (4)
O80.6966 (2)1.04185 (17)0.48512 (7)0.0182 (4)
O90.9382 (2)0.24130 (17)0.54022 (7)0.0196 (4)
H9A1.015 (3)0.258 (3)0.5120 (13)0.026 (8)*
H9B0.901 (5)0.318 (2)0.5496 (18)0.048 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (11)0.0214 (12)0.0102 (9)0.0034 (9)0.0001 (7)0.0012 (8)
C20.0153 (11)0.0192 (11)0.0098 (9)0.0032 (9)0.0010 (7)0.0005 (8)
C30.0173 (11)0.0171 (11)0.0120 (9)0.0014 (9)0.0020 (7)0.0024 (8)
C40.0184 (11)0.0186 (11)0.0114 (9)0.0005 (9)0.0014 (7)0.0021 (8)
C50.0163 (10)0.0201 (11)0.0083 (8)0.0038 (9)0.0015 (7)0.0006 (8)
C60.0196 (11)0.0174 (11)0.0107 (9)0.0017 (9)0.0015 (7)0.0030 (8)
C70.0171 (10)0.0181 (11)0.0119 (9)0.0024 (9)0.0028 (7)0.0019 (8)
C80.0175 (11)0.0208 (12)0.0128 (9)0.0015 (9)0.0000 (7)0.0001 (8)
C90.0141 (10)0.0189 (11)0.0125 (9)0.0023 (9)0.0012 (7)0.0004 (8)
C100.0163 (11)0.0189 (11)0.0141 (9)0.0008 (9)0.0022 (8)0.0006 (8)
C110.0165 (11)0.0192 (11)0.0133 (9)0.0001 (9)0.0011 (7)0.0025 (8)
C120.0178 (11)0.0213 (11)0.0098 (9)0.0001 (9)0.0014 (7)0.0011 (8)
C130.0182 (11)0.0181 (11)0.0142 (9)0.0005 (9)0.0010 (8)0.0020 (8)
C140.0172 (11)0.0192 (11)0.0139 (9)0.0003 (9)0.0017 (8)0.0015 (8)
Na10.0239 (5)0.0191 (5)0.0107 (4)0.0016 (4)0.0008 (3)0.0015 (3)
O10.0254 (9)0.0211 (9)0.0121 (6)0.0027 (7)0.0002 (6)0.0035 (6)
O20.0310 (9)0.0195 (8)0.0107 (6)0.0028 (7)0.0027 (6)0.0022 (6)
O30.0288 (9)0.0213 (9)0.0067 (6)0.0024 (7)0.0015 (6)0.0004 (6)
O40.0260 (9)0.0207 (9)0.0144 (7)0.0020 (7)0.0016 (6)0.0035 (6)
O50.0274 (9)0.0192 (8)0.0111 (7)0.0036 (7)0.0028 (6)0.0002 (6)
O60.0294 (9)0.0271 (10)0.0089 (7)0.0077 (8)0.0000 (6)0.0006 (6)
O70.0269 (9)0.0212 (9)0.0145 (7)0.0042 (8)0.0024 (6)0.0038 (6)
O80.0227 (9)0.0199 (9)0.0122 (7)0.0007 (7)0.0025 (6)0.0011 (6)
O90.0247 (9)0.0209 (9)0.0134 (7)0.0009 (7)0.0016 (6)0.0017 (6)
Geometric parameters (Å, º) top
C1—C21.505 (3)C12—C131.390 (3)
C1—O11.245 (3)C12—O61.363 (2)
C1—O21.284 (3)C13—H130.9500
C2—C31.392 (3)C13—C141.391 (3)
C2—C71.393 (3)C14—H140.9500
C3—H30.9500Na1—H7B2.58 (4)
C3—C41.398 (3)Na1—Na1i3.6304 (17)
C4—H40.9500Na1—O12.4105 (19)
C4—C51.385 (3)Na1—O3ii2.4865 (17)
C5—C61.389 (3)Na1—O42.4016 (19)
C5—O31.376 (2)Na1—O72.5313 (18)
C6—H60.9500Na1—O8i2.4641 (19)
C6—C71.387 (3)Na1—O82.3799 (18)
C7—H70.9500O3—H3A0.851 (19)
C8—C91.490 (3)O5—H50.86 (2)
C8—O41.224 (3)O6—H6A0.853 (19)
C8—O51.312 (3)O7—H7A0.851 (18)
C9—C101.396 (3)O7—H7B0.838 (18)
C9—C141.390 (3)O8—H8A0.856 (18)
C10—H100.9500O8—H8B0.859 (18)
C10—C111.390 (3)O9—H9A0.844 (18)
C11—H110.9500O9—H9B0.856 (19)
C11—C121.388 (3)
O1—C1—C2119.6 (2)O1—Na1—Na1i145.31 (5)
O1—C1—O2124.34 (18)O1—Na1—O3ii116.52 (6)
O2—C1—C2116.04 (19)O1—Na1—O784.21 (6)
C3—C2—C1119.5 (2)O1—Na1—O8i160.06 (7)
C3—C2—C7119.32 (18)O3ii—Na1—H7B154.7 (7)
C7—C2—C1121.1 (2)O3ii—Na1—Na1i77.36 (5)
C2—C3—H3119.7O3ii—Na1—O7158.15 (7)
C2—C3—C4120.5 (2)O4—Na1—H7B53.5 (5)
C4—C3—H3119.7O4—Na1—Na1i119.14 (6)
C3—C4—H4120.3O4—Na1—O185.60 (6)
C5—C4—C3119.3 (2)O4—Na1—O3ii114.06 (6)
C5—C4—H4120.3O4—Na1—O772.19 (6)
C4—C5—C6120.56 (18)O4—Na1—O8i80.15 (6)
O3—C5—C4122.3 (2)O7—Na1—H7B18.9 (4)
O3—C5—C6117.10 (19)O7—Na1—Na1i81.43 (5)
C5—C6—H6120.1O8—Na1—H7B106.6 (5)
C7—C6—C5119.8 (2)O8i—Na1—H7B74.1 (8)
C7—C6—H6120.1O8i—Na1—Na1i40.58 (4)
C2—C7—H7119.8O8—Na1—Na1i42.34 (5)
C6—C7—C2120.4 (2)O8—Na1—O1106.32 (7)
C6—C7—H7119.8O8—Na1—O3ii78.79 (6)
O4—C8—C9122.4 (2)O8i—Na1—O3ii82.26 (6)
O4—C8—O5123.39 (18)O8—Na1—O4156.91 (7)
O5—C8—C9114.24 (19)O8—Na1—O789.09 (6)
C10—C9—C8118.8 (2)O8i—Na1—O778.22 (6)
C14—C9—C8121.8 (2)O8—Na1—O8i82.93 (6)
C14—C9—C10119.35 (19)C1—O1—Na1125.24 (15)
C9—C10—H10119.7C5—O3—H3A106 (3)
C11—C10—C9120.7 (2)C5—O3—Na1iii140.13 (15)
C11—C10—H10119.7Na1iii—O3—H3A112 (3)
C10—C11—H11120.4C8—O4—Na1157.77 (15)
C12—C11—C10119.3 (2)C8—O5—H5104 (4)
C12—C11—H11120.4C12—O6—H6A111 (2)
C11—C12—C13120.67 (18)H7A—O7—H7B104 (3)
O6—C12—C11121.9 (2)Na1—O7—H7A108 (2)
O6—C12—C13117.42 (19)Na1—O7—H7B84 (3)
C12—C13—H13120.2H8A—O8—H8B99 (3)
C12—C13—C14119.7 (2)Na1—O8—H8A108 (2)
C14—C13—H13120.2Na1i—O8—H8A120 (2)
C9—C14—C13120.3 (2)Na1i—O8—H8B109 (2)
C9—C14—H14119.8Na1—O8—H8B126.5 (19)
C13—C14—H14119.8Na1—O8—Na1i97.07 (6)
Na1i—Na1—H7B90.1 (8)H9A—O9—H9B102 (3)
O1—Na1—H7B86.2 (8)
C1—C2—C3—C4178.6 (2)C10—C11—C12—C130.2 (3)
C1—C2—C7—C6177.1 (2)C10—C11—C12—O6179.9 (2)
C2—C1—O1—Na186.0 (2)C11—C12—C13—C140.2 (3)
C2—C3—C4—C51.3 (3)C12—C13—C14—C90.1 (3)
C3—C2—C7—C61.3 (3)C14—C9—C10—C110.3 (3)
C3—C4—C5—C60.8 (3)O1—C1—C2—C318.8 (3)
C3—C4—C5—O3179.8 (2)O1—C1—C2—C7159.5 (2)
C4—C5—C6—C70.8 (3)O2—C1—C2—C3161.2 (2)
C4—C5—O3—Na1iii158.18 (17)O2—C1—C2—C720.5 (3)
C5—C6—C7—C21.8 (3)O2—C1—O1—Na194.0 (2)
C6—C5—O3—Na1iii20.9 (3)O3—C5—C6—C7178.3 (2)
C7—C2—C3—C40.3 (3)O4—C8—C9—C101.5 (3)
C8—C9—C10—C11179.9 (2)O4—C8—C9—C14178.2 (2)
C8—C9—C14—C13179.9 (2)O5—C8—C9—C10177.68 (19)
C9—C8—O4—Na129.2 (5)O5—C8—C9—C142.6 (3)
C9—C10—C11—C120.1 (3)O5—C8—O4—Na1149.9 (3)
C10—C9—C14—C130.3 (3)O6—C12—C13—C14179.9 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O7iv0.85 (2)1.90 (2)2.720 (2)160 (4)
O5—H5···O2v0.86 (2)1.64 (2)2.485 (2)167 (6)
O7—H7A···O5v0.85 (2)2.04 (2)2.859 (2)161 (3)
O8—H8A···O6vi0.86 (2)1.92 (2)2.777 (2)178 (3)
O6—H6A···O9ii0.85 (2)1.81 (2)2.645 (2)165 (3)
O9—H9A···O1vii0.84 (2)1.93 (2)2.767 (2)176 (3)
O9—H9B···O20.86 (2)1.94 (2)2.778 (2)165 (4)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1/2, y+3/2, z1/2; (vii) x+2, y+1, z+1.
Poly[[(µ-4-hydroxybenzoato)(µ-4-hydroxybenzoic acid)rubidium] monohydrate] (compound10) top
Crystal data top
[K(C7H5O3)(C7H6O3)]·H2OF(000) = 344
Mr = 332.34Dx = 1.601 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54184 Å
a = 16.4136 (4) ÅCell parameters from 2277 reflections
b = 3.76614 (9) Åθ = 2.7–77.3°
c = 11.1651 (3) ŵ = 3.71 mm1
β = 92.533 (2)°T = 100 K
V = 689.51 (3) Å3Block, colourless
Z = 20.51 × 0.07 × 0.03 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1399 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1311 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.0000 pixels mm-1θmax = 77.8°, θmin = 2.7°
ω scansh = 2020
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2021)
k = 44
Tmin = 0.453, Tmax = 1.000l = 1412
3764 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1399 reflectionsΔρmax = 0.45 e Å3
114 parametersΔρmin = 0.36 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.38169 (11)0.1566 (5)0.45416 (16)0.0134 (4)
C20.29607 (11)0.2160 (5)0.48950 (15)0.0125 (4)
C30.27039 (11)0.1081 (5)0.60122 (16)0.0133 (4)
H30.3081780.0021290.6573650.016*
C40.18974 (11)0.1551 (5)0.63068 (16)0.0145 (4)
H40.1720160.0783090.7062830.017*
C50.13521 (11)0.3153 (5)0.54865 (17)0.0153 (4)
C60.16003 (11)0.4288 (5)0.43775 (16)0.0164 (4)
H60.1224530.5407830.3827030.020*
C70.24041 (12)0.3766 (5)0.40826 (16)0.0152 (4)
H70.2577200.4507700.3321410.018*
K10.5000000.68443 (14)0.2500000.0157 (2)
O10.43207 (8)0.0457 (4)0.53841 (11)0.0181 (3)
H10.5000000.0000000.5000000.083 (18)*
O20.40145 (8)0.2093 (4)0.34964 (11)0.0167 (3)
O30.05552 (9)0.3642 (5)0.57983 (14)0.0264 (4)
H3A0.010 (3)0.42 (3)0.547 (8)0.10 (3)*0.5
H3B0.036 (4)0.238 (16)0.635 (5)0.06 (2)*0.5
O40.0088 (3)0.0592 (8)0.2289 (3)0.0239 (9)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (9)0.0117 (8)0.0139 (8)0.0004 (6)0.0002 (7)0.0004 (6)
C20.0121 (8)0.0116 (8)0.0138 (8)0.0015 (6)0.0008 (6)0.0013 (6)
C30.0131 (8)0.0133 (8)0.0133 (8)0.0009 (7)0.0014 (6)0.0001 (6)
C40.0147 (9)0.0154 (9)0.0133 (8)0.0004 (7)0.0012 (7)0.0014 (6)
C50.0112 (8)0.0162 (9)0.0186 (9)0.0012 (7)0.0001 (7)0.0042 (7)
C60.0170 (9)0.0165 (9)0.0154 (9)0.0035 (7)0.0042 (7)0.0008 (7)
C70.0189 (9)0.0144 (9)0.0122 (8)0.0001 (7)0.0011 (7)0.0013 (6)
K10.0178 (3)0.0152 (3)0.0145 (3)0.0000.0051 (2)0.000
O10.0125 (6)0.0287 (8)0.0131 (6)0.0034 (6)0.0011 (5)0.0015 (5)
O20.0173 (7)0.0204 (7)0.0126 (6)0.0008 (5)0.0037 (5)0.0014 (5)
O30.0109 (7)0.0394 (9)0.0289 (8)0.0068 (6)0.0006 (6)0.0080 (7)
O40.029 (3)0.0231 (13)0.021 (3)0.0010 (14)0.0158 (17)0.0008 (12)
Geometric parameters (Å, º) top
C1—C21.493 (2)C7—H70.9500
C1—K1i3.5385 (18)K1—K1i3.7661 (1)
C1—O11.294 (2)K1—O1ii2.7613 (13)
C1—O21.241 (2)K1—O1iii2.7613 (13)
C2—C31.395 (2)K1—H1iii3.0338 (2)
C2—C71.396 (3)K1—H1ii3.0338 (2)
C3—H30.9500K1—O22.6862 (14)
C3—C41.389 (2)K1—O2iv2.8142 (14)
C4—H40.9500K1—O2v2.6862 (14)
C4—C51.390 (3)K1—O2vi2.8142 (14)
C5—C61.388 (3)O1—H11.2243 (12)
C5—O31.381 (2)O3—H3A0.84 (2)
C6—H60.9500O3—H3B0.85 (2)
C6—C71.388 (3)
C2—C1—K1i142.68 (11)O1iii—K1—O2iv67.71 (4)
O1—C1—C2115.78 (15)O1iii—K1—O2vi82.08 (4)
O1—C1—K1i87.41 (10)O1ii—K1—O2vi67.71 (4)
O2—C1—C2120.85 (16)O1ii—K1—O2iv82.08 (4)
O2—C1—K1i45.64 (9)H1iii—K1—H1ii133.873 (19)
O2—C1—O1123.36 (17)O2iv—K1—C1vi104.07 (4)
C3—C2—C1121.19 (16)O2v—K1—C1iv163.59 (4)
C3—C2—C7119.49 (17)O2iv—K1—C1iv18.38 (4)
C7—C2—C1119.31 (16)O2vi—K1—C1iv104.07 (4)
C2—C3—H3119.9O2—K1—C1vi163.59 (4)
C4—C3—C2120.22 (16)O2vi—K1—C1vi18.38 (4)
C4—C3—H3119.9O2v—K1—C1vi73.16 (4)
C3—C4—H4120.3O2—K1—C1iv73.16 (4)
C3—C4—C5119.46 (17)O2iv—K1—K1i134.62 (3)
C5—C4—H4120.3O2—K1—K1i48.23 (3)
C6—C5—C4121.05 (17)O2vi—K1—K1i134.62 (3)
O3—C5—C4118.79 (17)O2v—K1—K1i48.23 (3)
O3—C5—C6120.16 (17)O2—K1—O1iii96.82 (4)
C5—C6—H6120.4O2v—K1—O1iii111.83 (4)
C7—C6—C5119.18 (17)O2v—K1—O1ii96.82 (4)
C7—C6—H6120.4O2—K1—O1ii111.83 (4)
C2—C7—H7119.7O2—K1—H1iii81.69 (3)
C6—C7—C2120.58 (17)O2v—K1—H1iii131.80 (3)
C6—C7—H7119.7O2iv—K1—H1ii96.43 (3)
C1iv—K1—C1vi119.66 (6)O2v—K1—H1ii81.69 (3)
C1vi—K1—K1i120.17 (3)O2vi—K1—H1ii48.53 (3)
C1iv—K1—K1i120.17 (3)O2iv—K1—H1iii48.53 (3)
C1iv—K1—H1ii114.72 (3)O2—K1—H1ii131.80 (3)
C1vi—K1—H1iii114.72 (3)O2vi—K1—H1iii96.43 (3)
C1iv—K1—H1iii35.72 (3)O2v—K1—O2vi86.39 (4)
C1vi—K1—H1ii35.72 (3)O2—K1—O2iv86.39 (4)
K1i—K1—H1ii113.064 (9)O2vi—K1—O2iv90.77 (6)
K1i—K1—H1iii113.064 (9)O2v—K1—O296.45 (6)
O1iii—K1—C1iv58.41 (4)O2v—K1—O2iv177.16 (4)
O1iii—K1—C1vi98.85 (4)O2—K1—O2vi177.16 (4)
O1ii—K1—C1iv98.85 (4)C1—O1—K1iii136.39 (12)
O1ii—K1—C1vi58.41 (4)C1—O1—H1110.70 (12)
O1ii—K1—K1i111.60 (3)K1iii—O1—H190.68 (7)
O1iii—K1—K1i111.60 (3)C1—O2—K1i115.99 (11)
O1iii—K1—O1ii136.80 (6)C1—O2—K1133.10 (12)
O1ii—K1—H1iii128.80 (3)K1—O2—K1i86.39 (4)
O1iii—K1—H1ii128.80 (3)C5—O3—H3A139 (6)
O1ii—K1—H1ii23.80 (3)C5—O3—H3B120 (5)
O1iii—K1—H1iii23.80 (3)
C1—C2—C3—C4177.81 (16)K1i—C1—C2—C3114.38 (19)
C1—C2—C7—C6178.72 (17)K1i—C1—C2—C764.4 (3)
C2—C1—O1—K1iii66.6 (2)K1i—C1—O1—K1iii143.87 (12)
C2—C1—O2—K1i135.35 (14)K1i—C1—O2—K1111.11 (16)
C2—C1—O2—K1113.53 (17)O1—C1—C2—C39.0 (3)
C2—C3—C4—C51.0 (3)O1—C1—C2—C7172.15 (16)
C3—C2—C7—C60.1 (3)O1—C1—O2—K1i44.0 (2)
C3—C4—C5—C60.1 (3)O1—C1—O2—K167.2 (2)
C3—C4—C5—O3179.18 (17)O2—C1—C2—C3170.33 (17)
C4—C5—C6—C70.8 (3)O2—C1—C2—C78.5 (3)
C5—C6—C7—C20.8 (3)O2—C1—O1—K1iii114.08 (18)
C7—C2—C3—C41.0 (3)O3—C5—C6—C7179.95 (17)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z+1/2; (vi) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3vii0.84 (2)1.92 (5)2.694 (3)152 (9)
Symmetry code: (vii) x, y+1, z+1.
Poly[[(µ-4-hydroxybenzoato)(µ-4-hydroxybenzoic acid)rubidium] monohydrate] (compound11) top
Crystal data top
[Rb(C7H5O3)(C7H6O3)]·H2OF(000) = 380
Mr = 378.71Dx = 1.778 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54184 Å
a = 16.3445 (5) ÅCell parameters from 3586 reflections
b = 3.8267 (1) Åθ = 2.7–76.5°
c = 11.3460 (3) ŵ = 5.14 mm1
β = 94.437 (2)°T = 100 K
V = 707.51 (3) Å3Needle, colourless
Z = 20.51 × 0.05 × 0.04 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
1456 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1389 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.0000 pixels mm-1θmax = 76.8°, θmin = 2.7°
ω scansh = 1920
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)]
k = 34
Tmin = 0.366, Tmax = 0.830l = 1413
6047 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.037P)2 + 1.5509P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1456 reflectionsΔρmax = 0.50 e Å3
110 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.12191 (19)0.8810 (8)0.5446 (3)0.0203 (6)
C20.20623 (18)0.8097 (8)0.5076 (3)0.0190 (6)
C30.22927 (18)0.9037 (8)0.3965 (3)0.0203 (6)
H30.1905591.0103360.3409540.024*
C40.30928 (19)0.8415 (8)0.3665 (3)0.0226 (6)
H40.3255790.9086690.2912090.027*
C50.36460 (19)0.6805 (9)0.4480 (3)0.0262 (7)
C60.3422 (2)0.5803 (9)0.5582 (3)0.0266 (7)
H60.3806340.4672960.6125850.032*
C70.2630 (2)0.6467 (8)0.5882 (3)0.0225 (6)
H70.2472560.5809890.6639500.027*
O10.06828 (13)0.9828 (7)0.46107 (19)0.0255 (5)
H10.0000001.0000000.5000000.07 (3)*
H3A0.480 (5)0.63 (2)0.475 (6)0.04 (3)*0.5
H3B0.468 (7)0.74 (3)0.366 (8)0.07 (4)*0.5
O20.10631 (14)0.8472 (6)0.64819 (19)0.0229 (5)
O30.44367 (16)0.6192 (8)0.4168 (3)0.0414 (7)
O40.5000001.0285 (12)0.2500000.0655 (16)
Rb10.0000000.38113 (11)0.7500000.02391 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (14)0.0206 (15)0.0200 (14)0.0033 (11)0.0021 (11)0.0020 (11)
C20.0174 (13)0.0197 (13)0.0197 (13)0.0018 (11)0.0004 (11)0.0034 (11)
C30.0160 (14)0.0243 (15)0.0204 (14)0.0003 (11)0.0000 (11)0.0004 (11)
C40.0192 (14)0.0278 (16)0.0209 (14)0.0016 (12)0.0028 (11)0.0002 (12)
C50.0170 (14)0.0321 (17)0.0291 (16)0.0074 (13)0.0002 (12)0.0061 (13)
C60.0249 (16)0.0285 (16)0.0254 (15)0.0072 (13)0.0048 (12)0.0007 (13)
C70.0282 (16)0.0229 (15)0.0160 (13)0.0010 (12)0.0006 (12)0.0008 (11)
O10.0166 (10)0.0428 (13)0.0174 (10)0.0016 (10)0.0036 (8)0.0004 (10)
O20.0249 (11)0.0276 (11)0.0167 (10)0.0005 (9)0.0049 (8)0.0003 (8)
O30.0202 (13)0.0612 (19)0.0431 (16)0.0180 (12)0.0044 (11)0.0043 (14)
O40.052 (3)0.030 (2)0.109 (4)0.0000.026 (3)0.000
Rb10.0267 (2)0.0232 (3)0.0232 (2)0.0000.01127 (16)0.000
Geometric parameters (Å, º) top
C1—C21.496 (4)C6—H60.9500
C1—O11.299 (4)C6—C71.388 (5)
C1—O21.229 (4)C7—H70.9500
C1—Rb1i3.713 (3)O1—H11.233 (2)
C2—C31.391 (4)O1—Rb1ii3.534 (2)
C2—C71.398 (4)O1—Rb1iii2.917 (2)
C3—H30.9500O2—Rb12.801 (2)
C3—C41.397 (4)O2—Rb1i2.973 (2)
C4—H40.9500O3—H3A0.85 (2)
C4—C51.386 (4)O3—H3B0.85 (2)
C5—C61.384 (5)Rb1—Rb1iv3.8267 (1)
C5—O31.386 (4)Rb1—Rb1i3.8267 (1)
C2—C1—Rb1i145.12 (19)O1vi—Rb1—O1ii164.99 (8)
O1—C1—C2115.8 (3)O1vii—Rb1—O1ii92.95 (8)
O1—C1—Rb1i86.48 (17)O1iii—Rb1—O1vii164.99 (8)
O2—C1—C2120.8 (3)O1iii—Rb1—O1vi122.96 (10)
O2—C1—O1123.4 (3)O1vi—Rb1—O2v63.31 (6)
O2—C1—Rb1i44.97 (16)O1vi—Rb1—O2iv78.04 (6)
C3—C2—C1121.8 (3)O1iii—Rb1—O2iv63.31 (6)
C3—C2—C7119.7 (3)O1iii—Rb1—O2v78.04 (6)
C7—C2—C1118.5 (3)O1vii—Rb1—Rb1iv133.53 (4)
C2—C3—H3120.0O1ii—Rb1—Rb1i46.47 (4)
C2—C3—C4120.1 (3)O1iii—Rb1—Rb1iv61.48 (5)
C4—C3—H3120.0O1vi—Rb1—Rb1iv61.48 (5)
C3—C4—H4120.4O1ii—Rb1—Rb1iv133.53 (4)
C5—C4—C3119.2 (3)O1vi—Rb1—Rb1i118.52 (5)
C5—C4—H4120.4O1vii—Rb1—Rb1i46.47 (4)
C6—C5—C4121.4 (3)O1iii—Rb1—Rb1i118.52 (5)
C6—C5—O3120.0 (3)O2iv—Rb1—C1v104.34 (6)
O3—C5—C4118.5 (3)O2v—Rb1—C1iv104.34 (6)
C5—C6—H6120.4O2viii—Rb1—C1v71.89 (6)
C5—C6—C7119.2 (3)O2—Rb1—C1v165.32 (7)
C7—C6—H6120.4O2v—Rb1—C1v16.99 (6)
C2—C7—H7119.8O2viii—Rb1—C1iv165.32 (7)
C6—C7—C2120.4 (3)O2—Rb1—C1iv71.89 (6)
C6—C7—H7119.8O2iv—Rb1—C1iv16.99 (6)
C1—O1—H1109.4 (2)O2—Rb1—O1ii57.01 (6)
C1—O1—Rb1iii130.5 (2)O2v—Rb1—O1ii124.97 (6)
C1—O1—Rb1ii149.33 (19)O2iv—Rb1—O1vii124.97 (6)
Rb1iii—O1—H191.16 (11)O2—Rb1—O1iii100.11 (6)
Rb1ii—O1—H187.63 (11)O2viii—Rb1—O1iii115.62 (6)
Rb1iii—O1—Rb1ii72.05 (5)O2iv—Rb1—O1ii111.93 (5)
C1—O2—Rb1i118.04 (19)O2viii—Rb1—O1vi100.11 (6)
C1—O2—Rb1130.00 (19)O2—Rb1—O1vi115.62 (6)
Rb1—O2—Rb1i82.96 (6)O2viii—Rb1—O1vii57.01 (6)
C5—O3—H3A113 (7)O2viii—Rb1—O1ii70.58 (6)
C5—O3—H3B124 (9)O2v—Rb1—O1vii111.93 (5)
H3A—O3—H3B100 (10)O2—Rb1—O1vii70.58 (6)
C1iv—Rb1—C1v117.94 (9)O2—Rb1—O2v176.13 (7)
C1v—Rb1—Rb1i121.03 (5)O2—Rb1—O2iv82.96 (6)
C1iv—Rb1—Rb1iv58.97 (5)O2viii—Rb1—O2v82.96 (6)
C1iv—Rb1—Rb1i121.03 (5)O2viii—Rb1—O2iv176.13 (7)
C1v—Rb1—Rb1iv58.97 (5)O2v—Rb1—O2iv93.17 (9)
O1iii—Rb1—C1iv55.13 (6)O2viii—Rb1—O2100.90 (9)
O1ii—Rb1—C1iv94.95 (6)O2v—Rb1—Rb1iv46.58 (4)
O1iii—Rb1—C1v94.56 (7)O2v—Rb1—Rb1i133.42 (4)
O1vi—Rb1—C1iv94.56 (7)O2—Rb1—Rb1i50.45 (5)
O1vii—Rb1—C1v94.95 (6)O2iv—Rb1—Rb1iv46.58 (4)
O1vii—Rb1—C1iv128.59 (6)O2viii—Rb1—Rb1iv129.55 (5)
O1vi—Rb1—C1v55.13 (6)O2viii—Rb1—Rb1i50.45 (5)
O1ii—Rb1—C1v128.59 (6)O2—Rb1—Rb1iv129.55 (5)
O1iii—Rb1—O1ii72.05 (5)O2iv—Rb1—Rb1i133.42 (4)
O1vi—Rb1—O1vii72.05 (5)Rb1iv—Rb1—Rb1i180.0
C1—C2—C3—C4178.2 (3)O1—C1—C2—C7169.9 (3)
C1—C2—C7—C6179.1 (3)O1—C1—O2—Rb165.3 (4)
C2—C1—O1—Rb1ii65.8 (5)O1—C1—O2—Rb1i40.1 (4)
C2—C1—O1—Rb1iii64.3 (3)O2—C1—C2—C3168.5 (3)
C2—C1—O2—Rb1115.6 (3)O2—C1—C2—C711.0 (4)
C2—C1—O2—Rb1i139.0 (2)O2—C1—O1—Rb1iii116.5 (3)
C2—C3—C4—C51.0 (5)O2—C1—O1—Rb1ii113.4 (4)
C3—C2—C7—C60.4 (5)O3—C5—C6—C7179.4 (3)
C3—C4—C5—C60.0 (5)Rb1i—C1—C2—C3114.3 (3)
C3—C4—C5—O3179.7 (3)Rb1i—C1—C2—C765.2 (4)
C4—C5—C6—C70.9 (5)Rb1i—C1—O1—Rb1ii86.2 (3)
C5—C6—C7—C20.7 (5)Rb1i—C1—O1—Rb1iii143.66 (17)
C7—C2—C3—C41.2 (4)Rb1i—C1—O2—Rb1105.4 (3)
O1—C1—C2—C310.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y1, z+3/2; (vi) x, y+1, z+1/2; (vii) x, y+2, z+1/2; (viii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3ix0.85 (2)1.94 (5)2.693 (6)147 (8)
O3—H3B···O40.85 (2)1.83 (3)2.674 (4)169 (12)
Symmetry code: (ix) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the support of staff and students of Scotch College Melbourne.

References

First citationAlnaqbi, M. A., Alzamly, A., Ahmed, S. H., Bakiro, M., Kegere, J. & Nguyen, H. L. (2021). J. Mater. Chem. A, 9, 3828–3854.  Web of Science CrossRef CAS Google Scholar
First citationBanerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704–4720.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDinnebier, R. E., Von Dreele, R., Stephens, P. W., Jelonek, S. & Sieler, J. (1999). J. Appl. Cryst. 32, 761–769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, T., Bai, Y., Wang, Y., Xu, H. & Jin, H. (2020). Coord. Chem. Rev. 410, 213221.  Web of Science CrossRef Google Scholar
First citationManojlović, L. (1968). Acta Cryst. B24, 326–330.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPalmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. https://crystalmaker.com/Google Scholar
First citationReiersølmoen, A. C., Battaglia, S., Øien-Ødegaard, S., Gupta, A. K., Fiksdahl, A., Lindh, R. & Erdélyi, M. (2020). Chem. Sci. 11, 7979–7990.  Web of Science PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSaunders, L. K., Nowell, H., Hatcher, L. E., Shepherd, H. J., Teat, S. J., Allan, D. R., Raithby, P. R. & Wilson, C. C. (2019). CrystEngComm, 21, 5249–5260.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y., Yang, A., Cao, C. & Zhao, B. (2019). Coord. Chem. Rev. 390, 50–75.  Web of Science CrossRef CAS Google Scholar
First citationSkinner, J. M. & Speakman, J. C. (1951). J. Chem. Soc. pp. 185–191.  CSD CrossRef Web of Science Google Scholar
First citationVela, M. J. & Foxman, B. M. (2000). Cryst. Eng. 3, 11–31.  CrossRef CAS Google Scholar
First citationWhite, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard-Casely, H. E. & Robson, R. (2015). Chem. Eur. J. 21, 18057–18061.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, X., Shimazu, M. S., Chen, X., Bu, X. & Feng, P. (2018). Angew. Chem. Int. Ed., 57, 1–5.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds