Skip to main content
Log in

Equiconvergence of Spectral Decompositions for Sturm–Liouville Operators: Triples of Lebesgue Spaces

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper deals with the Sturm–Liouville operator generated on the finite interval \([0,\pi]\) by the differential expression \(-y^{\prime\prime}+q(x)y\), where \(q=u^{\prime}\), \(u\in L_{\varkappa}[0,\pi]\) for some \(\varkappa\geq 2\), and arbitrary regular boundary conditions. Consider two such operators with different potentials but the same boundary conditions. We prove that the difference between spectral decompositions \(S_{m}^{1}(f)-S_{m}^{2}(f)\) of this operators tends to zero as \(m\to\infty\) for any \(f\in L_{\mu}[0,\pi]\) in the norm of the space \(L_{\nu}[0,\pi]\) if the indices satisfy the inequality \(1/\varkappa+1/\mu-1/\nu\leq 1\) (except for the case \(\varkappa=\nu=\infty\), \(\mu=1\)). In particular, in the case of a square summable function \(u\) the uniform equiconvergence on the whole interval \([0,\pi]\) is proved for an arbitrary function \(f\in L_{2}[0,\pi]\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Savchuk and A. A. Shkalikov, ‘‘Sturm–Liouville operators with singular potentials,’’ Math. Notes 66, 741–753 (1999).

    Article  MathSciNet  Google Scholar 

  2. R. Hryniv and Ya. Mykytuyk, “Inverse spectral problem for Sturm–Liouville operators with singular potentials,” Inverse Problems 19, 665–684 (2003);

    Article  MathSciNet  Google Scholar 

  3. R. Hryniv and Ya. Mykytuyk, ‘‘Inverse spectral problem for Sturm–Liouville operators with singular potentials,’’ Inverse Problems 19, 665–684 (2003); Math. Notes 66, 741–753 (1999).

  4. A. M. Savchuk and A. A. Shkalikov, ‘‘Sturm–Liouville operators with distributional potentials,’’ Tr. Mosk. Mat. Obs. 64, 159–219 (2003).

    MATH  Google Scholar 

  5. A. M. Savchuk and I. V. Sadovnichaya, ‘‘Spectral analysis of one-dimentional Dirac system with summable potential and Sturm–Liouville operators with distribution coefficients,’’ Sovrem. Mat. Fundam. Napravl. 66, 373–530 (2020).

    MathSciNet  Google Scholar 

  6. U. Dini, Fondamenti per la teorica delle funzioni di variabili reali (Pisa, 1878).

    MATH  Google Scholar 

  7. W. Steklov, ‘‘Sur les expressions asymptotiques de certaines fonctions, definies par les equations differentielles lineaires du second ordre, et leurs applications au probleme du developpement d une fonction arbitrair,’’ Soobs. Hark. Mat. Obs. 10 (2–6), 97–200 (1907–1909).

    Google Scholar 

  8. Y. D. Tamarkin, ‘‘Some general problems of ordinary linear differential equations and expansion arbitrary function in series of fundamental functions,’’ Math. Zeitschr. 27 (1), 1–54 (1928).

    Article  MathSciNet  Google Scholar 

  9. M. H. Stone, ‘‘A comparison of the series of Fourier and Birkhoff,’’ Trans. Am. Math. Soc. 28, 695–761 (1926).

    Article  MathSciNet  Google Scholar 

  10. V. A. Ilyin, ‘‘Equiconvergence, with the trigonometric series, of expansions in root functions of the one- dimensional Schrödinger operator with complex potential in the class L1,’’ Differ. Uravn. 27, 577–597 (1991).

    Google Scholar 

  11. I. S. Lomov, ‘‘The local convergence of biorthogonal series related to differential operators with nonsmooth coefficients. I,’’ Differ. Equat. 37, 351–366 (2001).

    Article  Google Scholar 

  12. A. S. Minkin, ‘‘Equiconvergence theorems for differential operators,’’ J. Math. Sci. 96, 3631–3715 (1999).

    Article  MathSciNet  Google Scholar 

  13. V. A. Vinokurov and V. A. Sadovnichii, ‘‘Uniform Equiconvergence of a Fourier series in Eigenfunctions of the first boundary value problem and of a trigonometric Fourier series,’’ Dokl. Akad. Nauk 380, 731–735 (2001).

    MathSciNet  MATH  Google Scholar 

  14. I. V. Sadovnichaya, ‘‘Equiconvergence of expansions in series in Eigenfunctions of Sturm–Liouville operators with distribution potentials,’’ Mat. Sb. 201 (9), 61–76 (2010).

    Article  MathSciNet  Google Scholar 

  15. A. G. Baskakov, A. V. Derbushev, and A. O. Shcherbakov, ‘‘The method of similar operators in the spectral analysis of nonselfadjoint Dirac operator with nonsmooth potential,’’ Izv. Math. 75, 445–469 (2011).

    Article  MathSciNet  Google Scholar 

  16. P. Djakov and B. Mityagin, ‘‘Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions,’’ J. Approx. Theory 164, 879–927 (2012).

    Article  MathSciNet  Google Scholar 

  17. P. Djakov and B. Mityagin, ‘‘Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions,’’ Indiana Univ. Math. J. 61, 359–398 (2012).

    Article  MathSciNet  Google Scholar 

  18. P. Djakov and B. Mityagin, ‘‘Equiconvergence of spectral decompositions of Hill–Schrödinger operators,’’ J. Differ. Equat. 255, 3233–3283 (2013).

    Article  Google Scholar 

  19. I. V. Sadovnichaya, ‘‘Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces,’’ Proc. Steklov Inst. Math. 293, 288–316 (2016).

    Article  MathSciNet  Google Scholar 

  20. A. I. Nazarov, D. M. Stolyarov, and P. B. Zatitskiy, ‘‘The Tamarkin equiconvergence theorem and a first-order trace formula for regular differential operators revisited,’’ J. Spectr. Theory 4, 365–389 (2014).

    Article  MathSciNet  Google Scholar 

  21. D. M. Polyakov, ‘‘Spectral properties of an even-order differential operator,’’ Differ. Equat. 52, 1098–1103 (2016).

    Article  MathSciNet  Google Scholar 

  22. A. M. Gomilko and G. V. Radzievskii, ‘‘Equiconvergence of series in Eigenfunctions of ordinary functional-differential operators,’’ Dokl. Akad. Nauk SSSR 316, 265–269 (1991).

    MathSciNet  Google Scholar 

  23. I. V. Sadovnichaya, ‘‘Equiconvergence theorems for Sturm–Liouville operators with singular potentials (rate of equiconvergence in \(W_{2}^{\theta}\)-norm),’’ Euras. Math. J. 1, 137–146 (2010).

    MathSciNet  MATH  Google Scholar 

  24. I. V. Sadovnichaya, ‘‘Equiconvergence of expansions in eigenfunctions of Sturm–Liouville operators with distributional potentials in Holder spaces,’’ Differ. Uravn. 48, 674–685 (2012).

    MathSciNet  MATH  Google Scholar 

  25. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  26. J. Berg and J. Löfström, Interpolation Spaces (Springer, Berlin, 1976).

    Book  Google Scholar 

  27. A. A. Shkalikov, ‘‘On the basis problem of the eigenfunctions of an ordinary differential operator,’’ Russ. Math. Surv. 34, 249–250 (1979).

    Article  Google Scholar 

  28. G. Hardy, J. Littlewood, and G. Polya, Inequalities (Cambridge, 1934).

  29. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Birkhäuser, Berlin, 1977).

    MATH  Google Scholar 

Download references

Funding

The study has been funded by the Russian Science Foundation (grant no. 20-11-20261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Savchuk or I. V. Sadovnichaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchuk, A.M., Sadovnichaya, I.V. Equiconvergence of Spectral Decompositions for Sturm–Liouville Operators: Triples of Lebesgue Spaces. Lobachevskii J Math 42, 1027–1052 (2021). https://doi.org/10.1134/S1995080221050164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221050164

Keywords:

Navigation