Skip to main content
Log in

Lysophosphatidic Acid Regulates Rho Family of GTPases in Lungs

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The bio-active lipid, lysophosphatidic acid (LPA) interacts with various lysophosphatidic acid receptors (LPARs) to affect a variety of cellular functions, including proliferation, differentiation, survival, migration, morphogenesis and others. The Rho family of small GTPases, is well-known downstream signaling pathways activated by LPA. Among the Rho GTPases, RhoA, Rac1, and Cdc42 are best characterized and LPA-induced activation of the GTPases RhoA, Rac1, and Cdc42 influences a wide range of cellular processes and functions such as cell differentiation, contractile movements, cellular migration, or infiltration. In this review, we will briefly discuss the interplay between LPA and each of these three Rho family proteins, summarizing the main interactions between them. Our discussion will focus mainly on their interplay within lung endothelial and epithelial cells, drawing attention to how these interactions may contribute to pro-inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sheng, X., Yung, Y. C., Chen, A. & Chun, J. (2015). Lysophosphatidic acid signalling in development. Development, 142, 1390–1395.

    Article  CAS  Google Scholar 

  2. Lin, M. E., Herr, D. R. & Chun, J. (2010). Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins & Other Lipid Mediators, 91, 130–138.

    Article  CAS  Google Scholar 

  3. Xu, M. Y., Porte, J., Knox, A. J., Weinreb, P. H., Maher, T. M. & Violette, S. M. et al. (2009). Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). The American Journal of Pathology, 174, 1264–1279.

    Article  CAS  Google Scholar 

  4. Phuyal, S. & Farhan, H. (2019). Multifaceted Rho GTPase signaling at the endomembranes. Frontiers in Cell and Developmental Biology, 7, 127.

    Article  Google Scholar 

  5. Sadok, A. & Marshall, C. J. (2014). Rho GTPases: masters of cell migration. Small GTPases, 5, e29710.

    Article  Google Scholar 

  6. Dovas, A. & Couchman, J. R. (2005). RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochemical Journal, 390, 1–9.

    Article  CAS  Google Scholar 

  7. Moon, S. Y. & Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends in Cell Biology, 13, 13–22.

    Article  CAS  Google Scholar 

  8. Rossman, K. L., Der, C. J. & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular Cell Biology, 6, 167–180.

    Article  CAS  Google Scholar 

  9. Sit, S. T. & Manser, E. (2011). Rho GTPases and their role in organizing the actin cytoskeleton. Journal of Cell Science, 124, 679–683.

    Article  CAS  Google Scholar 

  10. Tojkander, S., Gateva, G. & Lappalainen, P. (2012). Actin stress fibers-assembly, dynamics and biological roles. Journal of Cell Science, 125, 1855–1864.

    CAS  PubMed  Google Scholar 

  11. Burridge, K. & Guilluy, C. (2016). Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research, 343, 14–20.

    Article  CAS  Google Scholar 

  12. Zahra, F. T., Sajib, M. S., Ichiyama, Y., Akwii, R. G., Tullar, P. E. & Cobos, C. et al. (2019). Endothelial RhoA GTPase is essential for in vitro endothelial functions but dispensable for physiological in vivo angiogenesis. Scientific Reports, 9, 11666

    Article  Google Scholar 

  13. van Nieuw Amerongen, G. P., Vermeer, M. A. & van Hinsbergh, V. W. (2000). Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, E127–133.

    PubMed  Google Scholar 

  14. van Nieuw Amerongen, G. P., van Delft, S., Vermeer, M. A., Collard, J. G. & van Hinsbergh, V. W. (2000). Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circulation Research, 87, 335–340.

    Article  Google Scholar 

  15. Escribano, J., Chen, M. B., Moeendarbary, E., Cao, X., Shenoy, V. & Garcia-Aznar, J. M. et al. (2019). Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLOS Computational Biology, 15, e1006395.

    Article  CAS  Google Scholar 

  16. Sedzinski, J., Hannezo, E., Tu, F., Biro, M. & Wallingford, J. B. (2017). Correction: RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells. Journal of Cell Science, 130, 1017.

    Article  Google Scholar 

  17. Ward, H. E. & Nicholas, T. E. (1984). Alveolar type I and type II cells. Australian and New Zealand Journal of Medicine, 14, 731–734.

    Article  CAS  Google Scholar 

  18. Froese, A. R., Shimbori, C., Bellaye, P. S., Inman, M., Obex, S. & Fatima, S. et al. (2016). Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 194, 84–96.

    Article  CAS  Google Scholar 

  19. Mustafa, S. B., Isaac, J., Seidner, S. R., Dixon, P. S., Henson, B. M. & DiGeronimo, R. J. (2014). Mechanical stretch induces lung α-epithelial Na(+) channel expression. Experimental Lung Research, 40, 380–391.

    Article  CAS  Google Scholar 

  20. Foster, C. D., Varghese, L. S., Gonzales, L. W., Margulies, S. S. & Guttentag, S. H. (2010). The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells. Pediatric Research, 67, 585–590.

    Article  CAS  Google Scholar 

  21. Bartram, U. & Speer, C. P. (2004). The role of transforming growth factor beta in lung development and disease. Chest, 125, 754–765.

    Article  Google Scholar 

  22. Fernandez, I. E. & Eickelberg, O. (2012). The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proceedings of the American Thoracic Society, 9, 111–116.

    Article  CAS  Google Scholar 

  23. Pittet, J. F., Griffiths, M. J., Geiser, T., Kaminski, N., Dalton, S. L. & Huang, X. et al. (2001). TGF-beta is a critical mediator of acute lung injury. Journal of Clinical Investigation, 107, 1537–1544.

    Article  CAS  Google Scholar 

  24. Waterman-Storer, C. M. & Salmon, E. (1999). Positive feedback interactions between microtubule and actin dynamics during cell motility. Current Opinion in Cell Biology, 11, 61–67.

    Article  CAS  Google Scholar 

  25. Filippi, M. D., Szczur, K., Harris, C. E. & Berclaz, P. Y. (2007). Rho GTPase Rac1 is critical for neutrophil migration into the lung. Blood, 109, 1257–1264.

    Article  CAS  Google Scholar 

  26. Vázquez-Medina, J. P., Dodia, C., Weng, L., Mesaros, C., Blair, I. A. & Feinstein, S. I. et al. (2016). The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. The FASEB Journal, 30, 2885–2898.

    Article  Google Scholar 

  27. Zhao, J., Mialki, R. K., Wei, J., Coon, T. A., Zou, C. & Chen, B. B. et al. (2013). SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. The FASEB Journal, 27, 2611–2619.

    Article  CAS  Google Scholar 

  28. Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J. & Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Current Biology, 11, 1645–1655.

    Article  CAS  Google Scholar 

  29. Ueda, H., Morishita, R., Yamauchi, J., Itoh, H., Kato, K. & Asano, T. (2001). Regulation of Rac and Cdc42 pathways by G(i) during lysophosphatidic acid-induced cell spreading. Journal of Biological Chemistry, 276, 6846–6852.

    Article  CAS  Google Scholar 

  30. Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., Alberts, A. S. & Pfister, K. K. et al. (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology, 11, 1536–1541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health (R01 GM115389, R01HL151513 to J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.C., Zhao, J. Lysophosphatidic Acid Regulates Rho Family of GTPases in Lungs. Cell Biochem Biophys 79, 493–496 (2021). https://doi.org/10.1007/s12013-021-00993-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00993-y

Keywords

Navigation