Skip to main content
Log in

The Effects of Dicyclohexylcarbamimidoyl Oximes on the Properties of Model Lipid Membranes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The molecular mechanisms of action of dicyclohexyl-containing derivatives of O-iminoisourea, (E)-O-(N,N'-dicyclohexylcarbamimidoyl) oxime of cyclohexanone (1), (E)-O-(N,N'-dicyclohexylcarbodimide) oxime of propane-2-one (2) and (1-(E)-[(E)-(N,N'- dicyclohexylcarbamimidoyl)oxy]imino-1-(pyridine-4-yl)ethane (3), on model lipid membranes, unilamellar vesicles and planar lipid bilayers, were investigated. It was found that all the tested compounds did not affect the electrical properties of uncharged membranes of 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphocholine (POPC), while oxime 2 at a concentration more than 0.2 mM increased the boundary potential of negatively charged membranes of 1-palmitoyl-2-oleyl-sn-glycerol-3-phospho-1'-rac-glycerol (POPG) by 40 mV. It was shown that the ability of the oximes to induce leakage of a fluorescent probe calcein from POPC liposomes at the equimolar oxime/lipid ratio decreased in the order 2 > 13 from 25 to 15%. Compound 2 released up to 50% of the total calcein captured by POPG vesicles, while compounds 1 and 3 released no more than 15% of the probe. The observed differences in the ability of compound 2 to cause leakage of the probe from POPC and POPG liposomes can be explained by the formation of ion permeable pores in the POPG membranes. A higher efficiency of compound 2 compared to compounds 1 and 3 was due to the disordering effect of compound 2 on the lipid bilayers, which was confirmed by the data of differential scanning microcalorimetry. The results obtained are important in choosing a matrix for further chemical modification in the development of anticancer drugs based on dicyclohexylcarbamimidoyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lee K.C., Jeong S.B., Kim D.Y., Lee T.H., Kim S.G., Kim S.G., Lee S.-H., Noh S.M., Park Y. 2018. Synthesis and radical polymerization properties of thermal radical initiators based on O-imino-isourea: The effect of the alkyl side chain on the radical initiation temperature. J. Pol. Sci. Part A, Polymer Chem. 56, 1749–1756.

    Article  CAS  Google Scholar 

  2. Perricone S.C., Humphrey S.J., Skaletzky L.L., Graham B.E., Zandt R.A., Zins G.R. 1994. Synthesis and diuretic activity of alkyl- and arylguanidine analogs of N,N'-dicyclohexyl-4-morpholinecarboxamidine in rats and dogs. J. Med. Chem. 37, 3693–3700.

    Article  CAS  Google Scholar 

  3. Kamata Y., Fujita T., Kato T., Hayashi I., Kurosaka M., Katori M., Fujita Y., Majima M. 2009. An ATP-sensitive potassium channel blocker suppresses sodium-induced hypertension through increased secretion of urinary kallikrein. Hypertens. Res. 32, 220–226.

    Article  CAS  Google Scholar 

  4. Salvino J.M., Seoane P.R., Douty B.D., Awad M.M., Dolle R.E., Houck W.T., Faunce D.M., Sawutz D.G. 1993. Design of potent non-peptide competitive antagonists of the human bradykinin B2 receptor. J. Med. Chem. 36, 2583–2584.

    Article  CAS  Google Scholar 

  5. Sawutz D.G., Salvino J.M., Dolle R.E., Casiano F., Ward S.J., Houck W.T., Faunce D.M., Douty B.D., Baizman E., Awad M.M. 1994. The nonpeptide WIN 64338 is a bradykinin B2 receptor antagonist. Proc. Natl. Acad. Sci. USA. 91, 4693–4697.

    Article  CAS  Google Scholar 

  6. Kim B., Lee D.G., Kim D.Y., Kim H.J., Kong N.S., Kim J.C., Noh S.M., Jung H.W., Park Y.I. 2016. Thermal radical initiator compounds based on O-imino-isourea: Synthesis, polymerization, and characterization. J. Pol. Sci. Part A, Polymer Chem. 54, 3593–3600.

    Article  CAS  Google Scholar 

  7. Montal M., Muller P. 1972. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc. Nat. Acad. Sci. USA. 65, 3561–3566.

    Article  Google Scholar 

  8. Efimova S.S., Ostroumova O.S. 2015. Modifiers of the dipole potential of lipid bilayers. Acta Naturae. 7 (4), 70–79.

    Article  CAS  Google Scholar 

  9. Efimova S.S., Schagina L.V., Ostroumova O.S. 2017. Dipole-modifying effect of styrylpyridinium dyes and flavonoids on the model membranes of different lipid compositions. Cell Tiss. Biol. (St. Petersburg). 11 (4), 335–341.

    Article  Google Scholar 

  10. Efimova S.S., Medvedev R.Ya., Shchagina L.V., Ostroumova O.S. 2016. Increasing the fluidity of model lipid membranes under the influence of local anesthetics. Cell Tiss. Biol. (St. Petersburg). 58 (5), 378–384.

    CAS  Google Scholar 

  11. Efimova S.S., Ostroumova O.S. 2020. The disordering effect of plant metabolites on model lipid membranes of various thickness. Cell Tiss. Biol. (St. Petersburg). 14 (5), 388–397.

    Article  Google Scholar 

  12. Efimova S.S., Medvedev R.Ya., Chulkov E.G., Shchagina L.V., Ostroumova O.S. 2018. Regulation of pore-forming activity of cecropins by local anesthetics. Cell Tiss. Biol. (St. Petersburg). 12 (4), 331–341.

    Article  Google Scholar 

  13. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V.A., Rand R.P., Fuller N. 1992. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 61, 1213–1223.

    Article  CAS  Google Scholar 

  14. Wang L. 2012. Measurements and implications of the membrane dipole potential. Annu. Rev. Biochem. 81, 615–635.

    Article  CAS  Google Scholar 

  15. Ermakov Yu.A., Nesterenko A.M. 2017. Boundary potential of lipid bilayers: Methods and interpretations. J. Phys. Conf. Ser. 780, 012002.

    Article  Google Scholar 

  16. Wang P.Y., Lu J.Z., Chen J.W., Hwang F. 1994. Interaction of the interdigitated DPPG or DPPG/DMPC bilayer with human erythrocyte band 3: Differential scanning calorimetry and fluorescence studies. Chem. Phys. Lipids. 69, 241–249.

    Article  CAS  Google Scholar 

  17. Riske K.A., Barroso R.P., Vequi-Suplicy C.C., Germano R., Henriques V.B., Lamy M.T. 2009. Lipid bilayer pre-transition as the beginning of the melting process. Biochim. Biophys. Acta. 1788, 954–963.

    Article  CAS  Google Scholar 

  18. Cyboran S., Bonarska-Kujawa D., Pruchnik H., Zylka R., Oszmianski J., Kleszczynska H. 2014. Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Rew. Intern. 65, 47–58.

    Article  CAS  Google Scholar 

  19. Pruchnik H., Bonarska-Kujawa D., Zyłka R., Oszmianski J., Kleszczynska H. 2018. Application of the DSC and spectroscopy methods in the analysis of the protective effect of extracts from the blueberry fruit of the genus Vaccinium in relation to the lipid membrane. J. Therm. Anal. Calorim. 134, 679–689.

    Article  CAS  Google Scholar 

  20. Ricci M., Oliva R., Del Vecchio P., Paolantoni M., Morresi A., Sassia P. 2016. DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes. Biochim. Biophys. Acta. 1858, 3024–3031.

    Article  CAS  Google Scholar 

  21. Chen X., Huang Z., Hua W., Castada H., Allen H.C. 2010. Reorganization and caging of DPPC, DPPE, DPPG, and DPPS monolayers caused by dimethylsulfoxide observed using brewster angle microscopy. Langmuir. 26, 18 902–18 908.

    Article  Google Scholar 

  22. Cheng C.Y., Song J., Pas J., Meijer L.H., Han S. 2015. DMSO induces dehydration near lipid membrane surfaces. Biophys J. 109, 330–339.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out with the financial support of the Russian Science Foundation (project no. 19-14-00110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Efimova.

Ethics declarations

The authors state that there is no conflict of interest.

This article does not contain any studies involving humans and animals as objects of research.

Additional information

Translated by E. Puchkov

Abbreviations: POPC, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleyl-sn-glycero-3-phospho-1'-rac-glycerol; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DPPG, 1,2-dipalmitoyl-sn-glycero-3-phospho-1'-rac-glycerol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, S.S., Chernyshova, D.A., Sarkisyan, Z.M. et al. The Effects of Dicyclohexylcarbamimidoyl Oximes on the Properties of Model Lipid Membranes. Biochem. Moscow Suppl. Ser. A 15, 167–174 (2021). https://doi.org/10.1134/S1990747821020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821020045

Keywords:

Navigation