Skip to main content
Log in

Influence of Ionic Strength on Adsorption of Polypeptides on Lipid Membranes: Theoretical Analysis

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Theoretical analysis of the effect of the ionic strength of a solution on the surface (zeta) potential of liposomes formed by an anionic phospholipid (cardiolipin) with adsorbed polycations has been carried out. The experimental data were previously measured by the electrokinetic method in the presence of polylysine molecules of different molecular weights and a supporting electrolyte, KCl, at concentrations of 10, 40, and 100 mM. To approximate the experimental dependences of the potential on the amount of polylysine in the suspension, we used a theoretical model with parameters, among which the most physically significant are the thickness of the polymer layer, the adsorption constant, and the fraction of the surface of lipid membranes occupied by the polypeptide at the saturation. The found values of the model parameters demonstrate the effect of the length of the polypeptide molecules on the structure of the polymer layer varying from homogeneous to clustered distribution over the surface. A noticeable decrease in the efficiency of adsorption with an increase in the ionic strength of the solution is explained by the conformational rearrangements of the macromolecules on the surface and a decrease in the area of the surface available for their adsorption upon the saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Meier W., 2000. Polymer nanocapsules. Chem. Soc. Rev. 25, 295–303. https://pubs.rsc.org/en/content/articlehtml/2000/cs/a809106d

    Article  Google Scholar 

  2. Xu T., Zhang N., Nichols H.L., Shi D., Wen X. 2007. Modification of nanostructured materials for biomedical applications. Mater. Sci. Eng. C. 27, 579–594. https://doi.org/10.1016/j.msec.2006.05.029

    Article  CAS  Google Scholar 

  3. Cho Y.W., Kim J.-D., Park K. 2003. Polycation gene delivery systems: Escape from endosomes to cytosol. J. Pharm. Pharmacol. 55, 721–734. https://doi.org/10.1211/002235703765951311

    Article  CAS  PubMed  Google Scholar 

  4. Hong S., Leroueil P.R., Janus E.K., Peters J.L., Kober M.M., Islam M.T., Orr B.G. 2006. Baker J.R., Banaszak Holl M.M., Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17, 728–734. https://doi.org/10.1021/bc060077y

    Article  CAS  PubMed  Google Scholar 

  5. Illergård J., Römling U., Wågberg L., Ek M. 2012. Biointeractive antibacterial fibres using polyelectrolyte multilayer modification. Cellulose. 19, 1731–1741. https://doi.org/10.1007/s10570-012-9742-0

    Article  CAS  Google Scholar 

  6. McGeachy A.C., Dalchand N., Caudill E.R., Li T., Doǧangün M., Olenick L.L., Chang H., Pedersen J.A., Geiger F.M. 2018. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-L-lysine, and poly-L-arginine interacting with lipid bilayers. Phys. Chem. Chem. Phys. 20, 10846–10856. https://doi.org/10.1039/c7cp07353d

    Article  CAS  PubMed  Google Scholar 

  7. May S., Harries D., Ben-Shaul A. 2000. Lipid demixing and protein–protein interactions in the adsorption of charged proteins on mixed membranes. Biophys. J. 79, 1747–1760. https://doi.org/10.1016/S0006-3495(00)76427-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwieger C., Blume A. 2007. Interaction of poly(L-lysines) with negatively charged membranes: An FT-IR and DSC study. Eur. Biophys. J. 36, 437–450. https://doi.org/10.1007/s00249-006-0080-8

    Article  CAS  PubMed  Google Scholar 

  9. Mbamala E.C., Ben-Shaul A., May S. 2005. Domain formation Induced by the adsorption of charged proteins on mixed lipid membranes. Biophys. J. 88, 1702–1714. https://doi.org/10.1529/biophysj.104.048132

    Article  CAS  PubMed  Google Scholar 

  10. Hurwitz G., Guillen G.R., Hoek E.M.V. 2010. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Memb. Sci. 349, 349–357. https://doi.org/10.1016/j.memsci.2009.11.063

    Article  CAS  Google Scholar 

  11. Freire J.M., Domingues M.M., Matos J., Melo M.N., Veiga A.S., Santos N.C., Castanho M.A.R.B. 2011. Using zeta-potential measurements to quantify peptide partition to lipid membranes. Eur. Biophys. J. 40, 481–487. https://doi.org/10.1007/s00249-010-0661-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvares D.S., dos Santos Cabrera M.P., Ruggiero Neto J. 2016. Strategies for exploring electrostatic and nonelectrostatic contributions to the interaction of helical antimicrobial peptides with model membranes. Adv. Biomembr. Lipid Self-Assembly. 24, 43–73. https://doi.org/10.1016/bs.abl.2016.05.001

    Article  CAS  Google Scholar 

  13. Dobrynin A.V., Rubinstein M. 2005. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006

    Article  CAS  Google Scholar 

  14. Ohshima H. 1995. Electrophoresis of soft particles. Adv. Colloid Interface Sci. 62, 189–235. https://doi.org/10.1016/0001-8686(95)00279-Y

    Article  CAS  Google Scholar 

  15. Finogenova O.A., Filinsky D. V., Ermakov Yu.A. 2008. Electrostatic effects upon adsorption and desorption of polylysines on the surface of lipid membranes of different composition. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 2, 181–188. https://doi.org/10.1134/s1990747808020128

    Article  Google Scholar 

  16. Marukovich N., McMurray M., Finogenova O., Nesterenko A., Batishchev O., Ermakov Yu. 2013. Interaction of polylysines with the surface of lipid membranes. Adv. Planar Lipid. 17, 139–166. https://doi.org/10.1016/b978-0-12-411516-3.00006-1

    Article  CAS  Google Scholar 

  17. Yaroslavov A.A., Efimova A.A., Lobyshev V.I., Ermakov Y.A., Kabanov V.A. 1997. Reversibility of structural rearrangements in lipid membranes induced by adsorption-desorption of a polycation. Membr. Cell. Biol. 10, 683–688. https://europepmc.org/abstract/med/9231366

    CAS  PubMed  Google Scholar 

  18. Heimburg T., Angerstein B., Marsh D. 1999. Binding of peripheral proteins to mixed lipid membranes: Effect of lipid demixing upon binding. Biophys. J. 76, 2575–2586. https://doi.org/10.1016/S0006-3495(99)77410-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marukovich N.I., Nesterenko A.M., Ermakov Y.A. 2015. Structural factors of lysine and polylysine interaction with lipid membranes. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 9, 40–47. https://doi.org/10.1134/S1990747814060038

    Article  Google Scholar 

  20. Kostritskii A.Y., Kondinskaia D.A., Nesterenko A.M., Gurtovenko A.A. 2016. Adsorption of synthetic cationic polymers on model phospholipid membranes: Insight from atomic-scale molecular dynamics simulations. Langmuir. 32, 10402–10414. https://doi.org/10.1021/acs.langmuir.6b02593

    Article  CAS  PubMed  Google Scholar 

  21. Khomich D.A., Nesterenko A.M., Kostritskii A.Y., Kondinskaia D.A., Ermakov Y.A., Gurtovenko A.A. 2017. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes. J. Phys. Conf. Ser. 794, 012010. https://doi.org/10.1088/1742-6596/794/1/012010

    Article  CAS  Google Scholar 

  22. Mcgeachy A.C., Caudill E.R., Liang D., Cui Q., Pedersen J.A., Geiger F.M. 2018. Counting charges on membrane-bound peptides. Chem. Sci. 9, 4285–4298. https://doi.org/10.1039/c8sc00804c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan X., Zhang R., Li Y., Shi T., An L., Huang Q. 2013. Monte Carlo study of polyelectrolyte adsorption on mixed lipid membrane. J. Phys. Chem. B. 117, 989–1002. https://doi.org/10.1021/jp310017j

    Article  CAS  PubMed  Google Scholar 

  24. Molotkovsky R.J., Galimzyanov T.R., Ermakov Yu.A. 2019. Polypeptides on the surface of lipid membranes. Theoretical analysis of electrokinetic data. Colloid J. 81, 125–135. https://doi.org/10.1134/S1061933X19020108

    Article  CAS  Google Scholar 

  25. Ermakov Yu.A. 2000. Ion equilibrium near lipid membranes: Empirical analysis of the simplest model. Colloid J. 62, 389-400.

    CAS  Google Scholar 

  26. Ermakov Y. 1990. The determination of binding site density and assocition constants for monovalent cation adsorption onto liposomes made from mixtures of zwitterionic and charged lipids. Biochim. Biophys. Acta. Biomembr. 1023, 91–97.

    Article  CAS  Google Scholar 

  27. Sokolov V.S., Batishchev O. V., Akimov S.A., Galimzyanov T.R., Konstantinova A.N., Malingriaux E., Gorbunova Y.G., Knyazev D.G., Pohl P. 2018. Residence time of singlet oxygen in membranes. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31901-9

    Article  CAS  Google Scholar 

  28. Finogenova O.A., Batischev O. V., Indenbom A.V., Zolotarevsky V.I., Ermakov Yu.A. 2009. Molecular distribution and charge of polylysine layers at the surface of lipid membranes and mica. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 3, 496–503. https://doi.org/10.1134/S1990747809040187

    Article  Google Scholar 

  29. Porcar I., Garcia R., Gómez C., Campos A., Abad C. 1997. Macromolecules in ordered media: 7. Influence of ionic strength and bilayer composition on the association of polyelectrolytes to mixed liposomes. Polymer (Guildf). 38, 5107–5113. https://doi.org/10.1016/S0032-3861(97)00061-X

    Article  CAS  Google Scholar 

  30. Shin Y., Roberts J.E., Santore M.M. 2002. The relationship between polymer/substrate charge density and charge overcompensation by adsorbed polyelectrolyte layers. J. Colloid Interface Sci. 247, 220–230. https://doi.org/10.1006/jcis.2001.8100

    Article  CAS  PubMed  Google Scholar 

  31. Murray D., Arbuzova A., Hangyás-Mihályné G., Gambhir A., Ben-Talvvs N., Honig B., McLaughlin S. 1999. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: Theory and experiment. Biophys. J. 77, 3176–3188. https://doi.org/10.1016/S0006-3495(99)77148-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ivashkov O. V., Sybachin A. V., Efimova A.A., Pergushov D. V., Orlov V.N., Schmalz H., Yaroslavov A.A. 2015. The influence of the chain length of polycations on their complexation with anionic liposomes. ChemPhysChem. 16, 2849–2853. https://doi.org/10.1002/cphc.201500474

    Article  CAS  PubMed  Google Scholar 

  33. Ermakov Yu.A., Asadchikov V.E., Volkov Y.O., Nuzhdin A.D., Roshchin B.S., Honkimaki V., Tikhonov A.M. 2019. Electrostatic and structural effects at the adsorption of polylysine on the surface of the DMPS monolayer. JETP Lett. 109, 334–339. https://doi.org/10.1134/S0021364019050060

    Article  CAS  Google Scholar 

  34. Gregory J., Barany S. 2011. Adsorption and flocculation by polymers and polymer mixtures. Adv. Coll. Int. Sci. 169, 1–12. https://doi.org/10.1016/j.cis.2011.06.004

    Article  CAS  Google Scholar 

  35. Feng L., Stuart M. C., Adachi Y. 2015. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles. Adv. Coll. Int. Sci. 226, 101–114. https://doi.org/10.1016/j.cis.2015.09.004

    Article  CAS  Google Scholar 

  36. Yaroslavov A. A., Efimova A. A., Lobyshev V. I., Kabanov V. A. 2002. Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. Biochim. Biophys. Acta. Biomembr. 1560, 14–24. https://doi.org/10.1016/S0005-2736(01)00453-9

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme no. AAAA-A19-119010990119-9), as well as by the Russian Foundation for Basic Research (project no. 19-04-00242-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Molotkovsky.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by R. Molotkovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotkovsky, R.J., Galimzyanov, T.R. & Ermakov, Y.A. Influence of Ionic Strength on Adsorption of Polypeptides on Lipid Membranes: Theoretical Analysis. Biochem. Moscow Suppl. Ser. A 15, 175–183 (2021). https://doi.org/10.1134/S1990747821030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821030053

Keywords:

Navigation