Skip to main content

Advertisement

Log in

AFRL Additive Manufacturing Modeling Series: Challenge 4, In Situ Mechanical Test of an IN625 Sample with Concurrent High-Energy Diffraction Microscopy Characterization

  • Thematic Section: Metal Additive Manufacturing Modeling Challenge Series 2020
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

We describe 3D characterization of an additively manufactured Inconel 625 nickel-base superalloy specimen conducted during a uniaxial tension test using a suite of nondestructive x-ray techniques. High-energy diffraction microscopy in both near- and far-field modalities are employed in situ to track evolution of the material orientation and stress–strain fields at six points during the mechanical test, and these data streams are registered with micro-computed tomography reconstructions which probe the material density. This data volume was matched to a multi-modal serial sectioning characterization of the specimen taken after loading, described in this article’s companion. Twenty-eight grains which were monitored throughout the experiment were selected to form the basis for AFRL AM Modeling Series Challenge 4, Microscale Structure-to-Properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ludwig W, King A, Reischig P, Herbig M, Lauridsen EM, Schmidt S, Proudhon H, Forest S, Cloetens P, Rolland du Roscoat S, Buffière JY, Marrow TJ, Poulsen HF (2009) New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging. Mater Sci Eng, A 524(1–2):69–76. https://doi.org/10.1016/j.msea.2009.04.009

    Article  CAS  Google Scholar 

  2. Lienert U, Li SF, Hefferan CM, Lind J, Suter RM, Bernier JV, Barton NR, Brandes MC, Mills MJ, Miller MP, Jakobsen B, Pantleon W (2011) High-energy diffraction microscopy at the advanced photon source. JOM 63(7):70–77. https://doi.org/10.1007/s11837-011-0116-0

    Article  Google Scholar 

  3. Poulsen H (2012) An introduction to three-dimensional X-ray diffraction microscopy. J Appl Crystallogr 45:1084–1097. https://doi.org/10.1107/S0021889812039143

    Article  CAS  Google Scholar 

  4. Schuren JC, Shade PA, Bernier JV, Li SF, Blank B, Lind J, Kenesei P, Lienert U, Suter RM, Turner TJ, Dimiduk DM, Almer J (2015) New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr Opin Solid State Mater Sci 19(4):235–244. https://doi.org/10.1107/S0021889812039143

    Article  CAS  Google Scholar 

  5. Bernier JV, Suter RM, Rollett AD, Almer JD (2020) High-energy X-ray diffraction microscopy in materials science”. Annu Rev Mater Res 50(1):395–436. https://doi.org/10.1146/annurev-matsci-070616-124125

    Article  CAS  Google Scholar 

  6. Pokharel R, Lind J, Li SF, Kenesei P, Lebensohn RA, Suter RM, Rollett AD (2015) In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int J Plast 67:217–234

    Article  CAS  Google Scholar 

  7. Shade PA, Musinski WD, Obstalecki M, Pagan DC, Beaudoin AJ, Bernier JV, Turner TJ (2019) Exploring new links between crystal plasticity models and high-energy X-ray diffraction microscopy. Curr Opin Solid State Mater Sci 23(5):100793. https://doi.org/10.1016/j.cossms.2019.07.002

    Article  CAS  Google Scholar 

  8. Miller MP, Pagan DC, Beaudoin AJ, Nygren KE, Shadle DJ (2020) Understanding micromechanical material behavior using synchrotron X-rays and in situ loading. Metall Mater Trans A 51:4360–4376. https://doi.org/10.1007/s11661-020-05888-w

    Article  CAS  Google Scholar 

  9. Proudhon H, Pelerin M, King A, Ludwig W (2020) In situ 4D mechanical testing of structural materials: the data challenge. Curr Opin Solid State Mater Sci 24(4):100834. https://doi.org/10.1016/j.cossms.2020.100834

    Article  Google Scholar 

  10. Groeber M (2018) A preview of the U.S. Air Force research laboratory additive manufacturing modeling challenge series. JOM 70(4):441–444. https://doi.org/10.1007/s11837-018-2806-3

    Article  Google Scholar 

  11. Cox, M.E., Schwalbach, E.J., Blaiszik, B.J. et al. AFRL Additive Manufacturing Modeling Challenge Series: Overview. Integr Mater Manuf Innov (2021). https://doi.org/10.1007/s40192-021-00215-6

  12. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22:361–374

    Article  CAS  Google Scholar 

  13. Chapman MG, Shah MN, Donegan SP, Scott JM, Shade PA, Menasche DB, Uchic MD (2021) AFRL Additive manufacturing modeling series: challenge 4, 3D reconstruction of an IN625 high-energy diffraction microscopy sample using multi-modal serial sectioning. Integr Mater Manuf Innov 17:1–20. https://doi.org/10.1007/s40192-021-00212-9

    Article  Google Scholar 

  14. Shade PA, Musinski WD, Shah MN, Uchic MD, Donegan SP, Chapman MG, Park JS, Bernier JV, Kenesei P, Menasche DB, Obstalecki M, Schwalbach EJ, Miller JD, Groeber MA, Cox ME (2019) AFRL AM modeling challenge series challenge data package. Mater Data Facility. https://doi.org/10.18126/K5R2-32IU

    Article  Google Scholar 

  15. Shade PA, Menasche DB, Bernier JV, Kenesei P, Park J-S, Suter RM, Schuren JC, Turner TJ (2016) Fiducial marker application method for position alignment of in situ multimodal X-ray experiments and reconstructions. J Appl Crystallogr 49:700–704. https://doi.org/10.1107/S1600576716001989

    Article  CAS  Google Scholar 

  16. Poulsen HF, Nielsen SF, Lauridsen EM, Schmidt S, Suter RM, Lienert U, Margulies L, Lorentzen T, Juul Jensen D (2001) Threedimensionalmaps of grain boundaries and the stress state ofindividual grains in polycrystals and powders. J. Appl. Cryst. 34:751–756. https://doi.org/10.1107/S0021889801014273

    Article  CAS  Google Scholar 

  17. Poulsen HF (2004) Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer, Berlin

    Book  Google Scholar 

  18. Ludwig W, King A, Herbig M, Reischig P, Marrow J, Babout L, Lauridsen EM, Paulson H, Buffire JY (2010) Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques. JOM 62(12):22–28

    Article  Google Scholar 

  19. Suter RM, Hennessy D, Xiao C, Lienert U (2006) Forward modeling method for microstructure reconstruction using X-ray diffraction microscopy: single-crystal verification. Rev Sci Instrum 10(1063/1):2400017

    Google Scholar 

  20. Li SF, Suter RM (2013) Adaptive reconstruction method for three-dimensional orientation imaging. J Appl Crystallogr 46(2):512–524. https://doi.org/10.1107/S0021889813005268

    Article  CAS  Google Scholar 

  21. Oddershede J, Schmidt S, Poulsen HF, Sørensen HO, Wright J, Reimers W (2010) Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. J Appl Phys 43:539–549. https://doi.org/10.1107/S0021889810012963

    Article  CAS  Google Scholar 

  22. Bernier JV, Barton NR, Lienert U, Miller MP (2011) Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J Strain Anal Eng Design 46(7):527–547. https://doi.org/10.1177/2F0309324711405761

    Article  Google Scholar 

  23. Shastri SD, Kenesei P, Mashayekhi A, Shade PA (2020) Focusing with saw-tooth refractive lenses at a high-energy X-ray beamline. J Synchrotron Radiat 27(3):590–598. https://doi.org/10.1107/S1600577520003665

    Article  CAS  Google Scholar 

  24. Lee JH, Almer J, Aydιner C, Bernier JV, Chapman K, Chupas P, Haeffner D, Kump K, Lee PL, Lienert U, Miceli A, Vera G (2007) Characterization and application of a GE amorphous silicon flat panel detector in a synchrotron light source. Nucl Instrum Methods Phys Res, Sect A 582(1):182–184. https://doi.org/10.1016/j.nima.2007.08.103

    Article  CAS  Google Scholar 

  25. Shade PA, Blank B, Schuren JC, Turner TJ, Kenesei P, Goetze K, Suter RM, Bernier JV, Li SF, Lind J, Lienert U, Almer J (2015) A rotational and axial motion system load frame insert for in situ high energy X-ray studies. Rev Sci Instrum 86:093902. https://doi.org/10.1063/1.4927855

    Article  CAS  Google Scholar 

  26. https://github.com/joelvbernier/hexrd

  27. Lind J, Rollett AD, Pokharel R, Hefferan CM, Li SF, Lienert U, Suter RM (2017) Image processing in experiments on, and simulations of plastic deformation of polycrystals. In: Proceedings of IEEE international conference on image processing. IEEE

  28. Li SF. IceNine. https://github.com/FrankieLi/IceNine

  29. Menasche DB, Shade PA, Suter RM (2020) Accuracy and precision of near-field high-energy diffraction microscopy forward-model-based microstructure reconstructions. J Appl Crystallogr 53(1):107–116

    Article  CAS  Google Scholar 

  30. Wang Y, De Carlo F, Foster I, Insley J, Kesselman C, Lane P, von Laszewski G, Mancini DC, McNulty I, Su M, Tieman B (1999) Quasi-real-time X-ray microtomography system at the advanced photon source. SPIE Proceedings 3772:318

    Article  Google Scholar 

  31. De Carlo F, Albee PB, Chu YS, Mancini DC, Tieman B, Wang SY (2002) High-throughput real-time X-ray microtomography at the advanced photon source. In: SPIE proceedings, volume 4503

  32. Menasche DB, Shade PA, Lind J, Li SF, Bernier JV, Kenesei P, Schuren JC, Suter RM (2016) Correlation of thermally induced pores with microstructural features using high energy X-rays. Metall Mater Trans A 47:5580–5588

    Article  CAS  Google Scholar 

  33. Menasche DB, Lind J, Li SF, Kenesei P, Bingert JF, Lienert U, Suter RM (2016) Shock induced damage in copper: a before and after, three-dimensional study. J Appl Phy 119: https://doi.org/10.1063/1.4947270

    Article  CAS  Google Scholar 

  34. Naragani D, Sangid MD, Shade PA, Schuren JC, Sharma H, Park J-S, Kenesei P, Bernier JV, Todd TJ, Parr I (2017) Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy. Acta Mater 137:71–84. https://doi.org/10.1016/j.actamat.2017.07.027

    Article  CAS  Google Scholar 

  35. Cho JH, Rollett AD, Oh KH (2005) Determination of a mean orientation in electron backscatter diffraction measurements. Metall Mater Trans A 36:3427–3438. https://doi.org/10.1007/s11661-005-0016-4

    Article  Google Scholar 

Download references

Acknowledgements

DBM, WDM, MO, MNS, SPD, JVB, and PAS acknowledge support from the United States Air Force Research Laboratory (AFRL). DBM is thankful for the high-performance computer time and resources provided by the AFRL DoD Supercomputing Resource Center (DSRC) that supported HEDM reconstructions performed in this work. The authors acknowledge technical discussions and logistical support from Marie Cox (AFRL, program manager for AFRL AM Modeling Series). Edwin Schwalbach (AFRL) and Michael Groeber (Ohio State University, previously employed at AFRL) are acknowledged for technical discussions and providing the AM material. Michael Uchic (AFRL) is acknowledged for technical discussions and serial sectioning coordination. Sirina Safriet (UDRI) and Basil Blank (Pulseray) are acknowledged for help with specimen preparation. Jon Almer, Ali Mashayekhi, and Kurt Goetze (Argonne National Lab) are acknowledged for support of the beamline experiment. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Menasche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menasche, D.B., Musinski, W.D., Obstalecki, M. et al. AFRL Additive Manufacturing Modeling Series: Challenge 4, In Situ Mechanical Test of an IN625 Sample with Concurrent High-Energy Diffraction Microscopy Characterization. Integr Mater Manuf Innov 10, 338–347 (2021). https://doi.org/10.1007/s40192-021-00218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00218-3

Keywords

Navigation