Skip to main content
Log in

Characterization of a CO2-Concentrating Mechanism with Low Sodium Dependency in the Centric Diatom Chaetoceros gracilis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae induce a CO2-concentrating mechanism (CCM) to overcome CO2-limiting stress in aquatic environments by coordinating inorganic carbon (Ci) transporters and carbonic anhydrases (CAs). Two mechanisms have been suggested to facilitate Ci uptake from aqueous media: Na+-dependent HCO3 uptake by solute carrier (SLC) family transporters and accelerated dehydration of HCO3 to CO2 by external CA in model diatoms. However, studies on ecologically and industrially important diatoms including Chaetoceros gracilis, a common food source in aquacultures, are still limited. Here, we characterized the CCM of C. gracilis using inhibitors and growth dependency on Na+ and CO2. Addition of a membrane-impermeable SLC inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS), or the transient removal of Na+ from the culture medium did not impair photosynthetic affinity for Ci in CO2-limiting stress conditions, but addition of a membrane-impermeable CA inhibitor, acetazolamide, decreased Ci affinity to one-third of control cultures. In culture medium containing 0.23 mM Na+ C. gracilis grew photoautotrophically by aeration with air containing 5% CO2, but not with the air containing 0.04% CO2. These results suggested that C. gracilis utilizes external CAs in its CCM to elevate photosynthetic affinity for Ci rather than plasma-membrane SLC family transporters. In addition, it is possible that low level of Na+ may support the CCM in processes other than Ci-uptake at the plasma membrane specifically in CO2-limiting conditions. Our findings provide insights into the diversity of CCMs among diatoms as well as basic information to optimize culture conditions for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand LE (1984) The salinity tolerance of forty-six marine phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    Article  CAS  Google Scholar 

  • Carstensen J, Klais R, Cloern JE (2015) Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar Coast Shelf Sci 162:98–109

    Article  Google Scholar 

  • Chrachri A, Hopkinson BM, Flynn K, Brownlee C, Wheeler GL (2018) Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Nat Commun 9:74

    Article  CAS  Google Scholar 

  • Cordat E, Casey JR (2009) Bicarbonate transport in cell physiology and disease. Biochem J 417:423–439

    Article  CAS  PubMed  Google Scholar 

  • Drechsler Z, Beer S (1991) Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97:1439–1440

    Article  CAS  Google Scholar 

  • Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990–5995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Nishimoto N, Notoya A, Hellebust JA (1995) Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant Cell Physiol 36:759–764

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Goyal A, Shiraiwa Y, Husic HD, Tolbert NE (1992) External and internal carbonic anhydrases in Dunaliella species. Mar Biol 113:349–355

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16:28–35

    Google Scholar 

  • Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol 162:1142–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono A, Chou T, Radhakrishnan A, Bolla JR, Sankar K, Shome S, Su C, Jernigan RL, Robinson CV, Yu EW, Spalding MH (2020) Structure and function of LCI1: a plasma membrane CO2 channel in the Chlamydomonas CO2 concentrating mechanism. Plant J 102:1107–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Mackinder LCM (2018) The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytol 217:54–61

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y (2017) Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism. Philos Trans R Soc Lond B Biol Sci 372:20160403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moroney JV, Husic HD, Tolbert NE (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci USA 110:1767–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Nimer NA, Iglesias-Rodriguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33:625–631

    Article  CAS  Google Scholar 

  • Nonoyama T, Kazamia E, Nawaly H, Gao X, Tsuji Y, Matsuda Y, Bowler C, Tanaka T, Dorrell RG (2019) Metabolic innovations underpinning the origin and diversification of the diatom chloroplast. Biomolecules 9:322

    Article  CAS  PubMed Central  Google Scholar 

  • Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010) Expression of a low CO2–inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22:3105–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees TAV (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J Exp Bot 35:332–337

    Article  CAS  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315

    Article  PubMed  Google Scholar 

  • Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850

    Article  CAS  Google Scholar 

  • Rotatore C, Colman B, Kuzma M (1995) The active uptake of carbon dioxide by the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Plant, Cell Environ 18:913–918

    Article  CAS  Google Scholar 

  • Samukawa M, Shen C, Hopkinson BM, Matsuda Y (2014) Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth Res 121:235–249

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Dupont CL, Hopkinson BM (2017) The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content. J Exp Bot 68:3937–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  CAS  PubMed  Google Scholar 

  • Smith-Harding TJ, Beardall J, Mitchell JG (2017) The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J Phycol 53:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221

    Article  CAS  PubMed  Google Scholar 

  • Tokushima H, Inoue-Kashino N, Nakazato Y, Masuda A, Ifuku K, Kashino Y (2016) Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnol Biofuels 9:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuji Y, Mahardika A, Matsuda Y (2017a) Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. J Exp Bot 68:3949–3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji Y, Nakajima K, Matsuda Y (2017b) Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J Exp Bot 68:3763–3772

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Fukuzawa H (2009) Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 49:42–51

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 112:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM (2016) Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J Exp Bot 67:3445–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hatsue Mizuhara and Yoriko Matsuda for technical assistance.

Funding

This work was supported financially by the Japan Science and Technology Agency (JST) Advanced Low Carbon Technology Research and Development Program (ALCA, grant No. JPMJAL1105).

Author information

Authors and Affiliations

Authors

Contributions

Y.T., T.Y., and H.F. designed research; G.K.A., Y.T., N.K., Y.F., and T.Y. performed experiments; G.K.A., Y.T., N.K., Y.F., T.Y., and H.F. analyzed data; and Y.T., G.K.A, T.Y., and H.F. wrote the paper.

Corresponding author

Correspondence to Hideya Fukuzawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, Y., Kusi-Appiah, G., Kozai, N. et al. Characterization of a CO2-Concentrating Mechanism with Low Sodium Dependency in the Centric Diatom Chaetoceros gracilis. Mar Biotechnol 23, 456–462 (2021). https://doi.org/10.1007/s10126-021-10037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10037-4

Keywords

Navigation