Skip to main content

Advertisement

Log in

Indoor Air Pollution in Indian Rural Kitchen: A Case Study

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The present study revealed that the traditional cooking practices could load ~ 2.8 ± 1.2 mg/m3 of PM2.5 in the kitchen, leading to womenfolk at risk. The high variability was observed in the measured values as the concentrations were influenced by several factors such as species of fuel wood used, amount of fuel burnt, duration of cooking, ventilation facility in the kitchen, etc. The calculated health quotient showed that the long-term prolong exposure to such PM2.5 concentrations can reduce the lung capacity of the exposed persons due to harmful impacts. A survey about air pollution awareness was also conducted among the village inhabitants, and findings of pollution loading in the kitchen were also shared with them for enabling them to make more informed decisions about choice of fuel types and precautions during the cooking process for avoiding the health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Global Burden of Disease (GBD). 2017 [cited on 2020 September, 12]. http://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet.pdf

  2. A.F. Akunne, V.R. Louis, M. Sanon and R. Sauerborn, Biomass solid fuel and acute respiratory infections: the ventilation factor. Int. J. Hyg. Environ. Health, 209 (2006) 445–450.

    Article  Google Scholar 

  3. A. Kankaria, B. Nongkynrih and S.K. Gupta, Indoor air pollution in India: Implications on health and its control. Indian J Community Med., 39 (2014) 203–207.

    Article  Google Scholar 

  4. Houselisting and Housing Census Data Highlights — 2011. [Last accessed/cited on 2017 May 16]. Available from: https://censusindia.gov.in/2011-common/censusdata2011.html

  5. World Health Organization, WHO guidelines for indoor air quality: household fuel combustion. World Health Organization, Geneva (2014).

    Google Scholar 

  6. L. Gao and G.E. Mann, Vascular NAD (P) H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc. Res., 82 (2009) 9–20.

    Article  Google Scholar 

  7. J.M. Lee, J. Li, D.A. Johnson, T.D. Stein, A.D. Kraft, M.J. Calkins, R.J. Jakel and J.A. Johnson, Nrf2, a multi-organ protector? The FASEB J., 19 (2005) 1061–1066.

    Article  Google Scholar 

  8. G.E. Mann, J. Niehueser-Saran, A. Watson, L. Gao, T. Ishii, P. de Winter and R.C. Siow, Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia. Acta Psychol. Sin., 59 (2007) 117.

    Google Scholar 

  9. K.R. Smith and A. Sagar, Making the clean available: escaping India’s Chulha Trap. Energy Policy, 75 (2014) 410–414.

    Article  Google Scholar 

  10. B.N. Holben, Y.J. Kaufman, A.W. Setzer, D.D. Tanre and D.E. Ward, Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A. GBBA (1991) 403–411.

  11. K. Balakrishnan, P. Ramaswamy and S. Sankar, Biomass smoke and health risks–the situation in developing countries. In. Air Pollution, (2004) 219–239.

  12. K. Balakrishnan, S. Sambandam, S. Ghosh, K. Mukhopadhyay, M. Vaswani, N.K. Arora, D. Jack, A. Pillariseti, M.N. Bates and K.R. Smith, Household air pollution exposures of pregnant women receiving advanced combustion cookstoves in India: implications for intervention. Ann. Glob. Health, 81 (2015) 375–385.

    Article  Google Scholar 

  13. K. Balakrishnan, S. Sankar, J. Parikh, R. Padmavathi, K. Srividya, V. Venugopal, S. Prasad and V.L. Pandey, Daily average exposures to respirable particulate matter from combustion of biomass fuels in rural households of southern India. Environ. Health Perspect., 110 (2002) 1069–1075.

    Article  Google Scholar 

  14. A. Doig and H. Warwick, Smoke-The killer in the kitchen: Indoor air pollution in developing countries (2004).

  15. S. Dhakal, Climate change and cities: the making of a climate friendly future. In Urban energy transition, (2008) 173–192.

  16. A.K. Pokhrel, M.N. Bates, J. Acharya, P. Valentiner-Branth, R.K. Chandyo, P.S. Shrestha, A.K. Raut and K.R. Smith, PM2. 5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels. Atmos. Environ., 113 (2015) 159–168.

    Article  ADS  Google Scholar 

  17. S.A. Mehetre, N.L. Panwar, D. Sharma and H. Kumar, Improved biomass cookstoves for sustainable development: a review. Renew. Sust. Energ. Rev., 73 (2017) 672–687.

    Article  Google Scholar 

  18. D. Chakraborty, N.K. Mondal and J.K. Datta, Indoor pollution from solid biomass fuel and rural health damage: a micro-environmental study in rural area of Burdwan, West Bengal. Int. J. Sustain. Built Environ., 3 (2014) 262–271.

    Article  Google Scholar 

  19. J.J. Zhang and L. Morawska, Combustion sources of particles: 2. Emission factors and measurement methods. Chemosphere, 49 (2002) 1059–1074.

    Article  ADS  Google Scholar 

  20. K.R. Smith, J.M. Samet, I. Romieu and N. Bruce, Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax, 55 (2000) 518–532.

    Article  Google Scholar 

  21. H.S. Huboyo, S. Tohno, P. Lestari, A. Mizohata and M. Okumura, Characteristics of indoor air pollution in rural mountainous and rural coastal communities in Indonesia. Atmos. Environ., 82 (2014) 343–350.

    Article  ADS  Google Scholar 

  22. M.A. Arbex, L.C. Martins, R.C. de Oliveira, L.A. Pereira, F.F. Arbex, J.E. Cançado, P.H. Saldiva and A.L. Braga, Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J Epidemiol Community Health, 61 (2007) 395–400.

    Article  Google Scholar 

  23. K. Rumchev, Y. Zhao and J. Spickett, Health risk assessment of indoor air quality, socioeconomic and house characteristics on respiratory health among women and children of Tirupur, South India. Int. J. Environ. Res. Public Health, 14 (2017) 429.

    Article  Google Scholar 

  24. P. Amoatey, H. Omidvarborna and M. Baawain, The modeling and health risk assessment of PM2.5 from Tema Oil Refinery. Hum. Ecol. Risk. Assess., 24 (2018) 1181–1196.

    Article  Google Scholar 

  25. World Health Organization, Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, Geneva (2006).

    Google Scholar 

  26. K.F. Liu, K. Yeh, M.J. Hung, C.W. Chen and Y.S. Shen, Health risk analysis of indoor air pollution. Int. J. Environ. Sci. Technol., 6 (2015) 464.

    Google Scholar 

  27. EPA U, A review of the reference dose and reference concentration processes. In Washington, DC: Risk Assessment Forum, U (No. 630, pp. 02–002F) (2002).

  28. P. Kadian and S. Kaushik, Rural energy for sustainable development. Participatory assessment of energy resources. Deep and Deep Publications Limited, New Delhi (2003).

    Google Scholar 

  29. A.R. Siddiqui, K. Lee, D. Bennett, X. Yang, K.H. Brown, Z.A. Bhutta and E.B. Gold, Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan. Indoor air, 19 (2009) 75–82.

    Article  Google Scholar 

  30. M. Ezzati, B.M. Mbinda and D.M. Kammen, Comparison of emissions and residential exposure from traditional and improved cookstoves in Kenya. Environ. Sci. Technol., 34 (2000) 578–583.

    Article  ADS  Google Scholar 

  31. Z. Qian, J. Zhang, L.R. Korn, F. Wei and R.S. Chapman, Factor analysis of household factors: are they associated with respiratory conditions in Chinese children? Int. J. Epidemiol., 33 (2004) 582–588.

    Article  Google Scholar 

  32. International Agency for Research on Cancer, Household use of solid fuels and high-temperature frying. IARC Press, International Agency for Research on Cancer, Lyon (2010).

    Google Scholar 

  33. M. Brauer, K. Bartlett, J. Regalado-Pineda and R. Perez-Padilla, Assessment of particulate concentrations from domestic biomass combustion in rural Mexico. Environ. Sci. Technol., 30 (1995) 104–109.

    Article  ADS  Google Scholar 

  34. L.P. Naeher, K.R. Smith, B.P. Leaderer, D. Mage and R. Grajeda, Indoor and outdoor PM2.5 and CO in high-and low-density Guatemalan villages. J. Expo. Sci. Environ. Epidemiol., 10 (2000) 544–551.

    Article  Google Scholar 

  35. N. Bruce, J. McCracken, R. Albalak, M. Scheid, K.R. Smith, V. Lopez and C. West, Impact of improved stoves, house construction and child location on levels of indoor air pollution exposure in young Guatemalan children. J. Expo. Sci. Environ. Epidemiol., 14 (2004) S26-33.

    Article  Google Scholar 

  36. K.L. Dionisio, S. Howie, K.M. Fornace, O. Chimah, R.A. Adegbola and M. Ezzati, Measuring the exposure of infants and children to indoor air pollution from biomass fuels in The Gambia. Indoor air, 18 (2008) 317–327.

    Article  Google Scholar 

  37. X. Gao, Q. Yu, Q. Gu, Y. Chen, K. Ding, J. Zhu and L. Chen, Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China. Indoor Air, 19 (2009) 198–205.

    Article  Google Scholar 

  38. F.A. Ansari, A.H. Khan, D.K. Patel, H. Siddiqui, S. Sharma, M. Ashquin and I. Ahmad, Indoor exposure to respirable particulate matter and particulate-phase PAHs in rural homes in North India. Environ. Monit. Assess., 170 (2010) 491–497.

    Article  Google Scholar 

  39. K. Balakrishnan, S. Ghosh, B. Ganguli, S. Sambandam, N. Bruce, D.F. Barnes and K.R. Smith, State and national household concentrations of PM2.5 from solid cookfuel use: results from measurements and modeling in India for estimation of the global burden of disease. Environ. Health, 12 (2013) 77.

    Article  Google Scholar 

  40. K.L. Dionisio, S.R. Howie, F. Dominici, K.M. Fornace, J.D. Spengler, R.A. Adegbola and M. Ezzati, Household concentrations and exposure of children to particulate matter from biomass fuels in The Gambia. Environ. Sci. Technol., 46 (2012) 3519–3527.

    Article  ADS  Google Scholar 

  41. R. Mukhopadhyay, S. Sambandam, A. Pillarisetti, D. Jack, K. Mukhopadhyay, K. Balakrishnan, M. Vaswani, M.N. Bates, P. Kinney, N. Arora and K. Smith, Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions. Glob. health action, 5 (2012) 19016.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, CSIR-National Physical Laboratory, New Delhi, for encouragement and support. Renu Masiwal is thankful to UGC for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhemendra Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masiwal, R., Sawlani, R., Singh, R. et al. Indoor Air Pollution in Indian Rural Kitchen: A Case Study. MAPAN 36, 395–403 (2021). https://doi.org/10.1007/s12647-021-00472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00472-y

Keywords

Navigation