Skip to main content
Log in

Vanadium-catalyzed Selective Oxidation of Sulfides to Sulfoxides and Sulfones with H2O2

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A direct selective approach to the oxidation of sulfides to sulfoxides and sulfones with H2O2 in moderate to good yields is developed. The reaction proceeds in the presence of 2 mol % of VO(acac)2 at room temperature. All sulfoxides and sulfones were detected by gas chromatography, and the molecular structures of 2-methylbenzyl 4-methylphenyl sulfone, 4-methylbenzyl 4-methylphenyl sulfone, 2-bromobenzyl 4-methylphenyl sulfone, and 4-tert-butylbenzyl benzyl sulfone were determined by single crystal X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, F., Luo, X.Q., Song, B.A., Bhadury, P.S., Yang, S., Jin, L.H., Xue, W., and Hu, D.Y., Bioorg. Med. Chem., 2008, vol. 16, p. 3632. https://doi.org/10.1016/j.bmc.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Krol, E., Gawolek, G.P., Nidzworski, D., Rychlowski, M., Szeja, M., Grynkiewicz, G., and Szewczyk, B., Bioorg. Med. Chem., 2014, vol. 22, p. 2662. https://doi.org/10.1016/j.bmc.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  3. Hanson, P., Ramon, A.A., Hendrickx, J., John, R., and Smith, L., New J. Chem., 2010, vol. 34, p. 65. https://doi.org/10.1039/b9nj00452a

    Article  CAS  Google Scholar 

  4. Tilstam, U., Org. Process Res. Dev., 2012, vol. 16, p. 1273. https://doi.org/10.1021/op300108w

    Article  CAS  Google Scholar 

  5. Gu, X.Y., Li, X., Chai, Y.H., Yang, Q., Li, P.X., and Yao, Y.M., Green Chem., 2013, vol. 15, p. 357. https://doi.org/10.1039/c2gc36683e

    Article  CAS  Google Scholar 

  6. Uematsu, T., Miyamoto, Y., Ogasawara, Y., Suzuki, K., Yamaguchi, K., and Mizuno, N., Catal. Sci. Technol., 2016, vol. 6, p. 222. https://doi.org/10.1039/c5cy01552a

    Article  Google Scholar 

  7. Basak, A., Goswami, M., Rajkumar, A., Mitra, T., Majumdar, S., O’Reilly, P., Bdour, H.M., Trudeau, V.L., and Basak, A., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 2225. https://doi.org/10.1016/j.bmcl.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  8. Bolotin, D.S., Demakova, M.Y., Legin, A.A., Suslonov, V.V., Nazarov, A.A., Jakupec, M.A., Keppler, B.K., and Kukushkin, V.Y., New J. Chem., 2017, vol. 41, p. 6840. https://doi.org/10.1039/c7nj00982h

    Article  CAS  Google Scholar 

  9. Lentz, N., Ladeira, S.M., Baceiredo, A., Kato, T., and Madec, D., Dalton Trans., 2018, vol. 47, p. 15751. https://doi.org/10.1039/c8dt03669a

    Article  CAS  PubMed  Google Scholar 

  10. Carreño, M.C., Torres, G.H., Ribagorda, M., and Urbano, A., Chem. Commun., 2009, vol. 41, p. 6129. https://doi.org/10.1039/b908043k

    Article  CAS  Google Scholar 

  11. Sajjadifar, S., Rezayati, S., Arzehgar, Z., Abbaspour, S., and Jafroudi, M.T., J. Chin. Chem. Soc., 2018, vol. 65, p. 960. https://doi.org/10.1002/jccs.201800036

    Article  CAS  Google Scholar 

  12. Aghajani, M., Safaei, E., and Karimi, B., Synth. Met., 2017, vol. 233, p. 63. https://doi.org/10.1016/j.synthmet.2017.08.003

    Article  CAS  Google Scholar 

  13. Veisi, H., Sajjadifar, S., Biabri, P.M., and Hemmati, S., Polyhedron, 2019, vol. 157, p. 358. https://doi.org/10.1016/j.poly.2018.09.034

    Article  CAS  Google Scholar 

  14. Maurya, M.R., Chandrakar, A.K., and Chand, S., J. Mol. Catal. A Chem., 2007, vol. 263, p. 227. https://doi.org/10.1016/j.molcata.2006.08.084

    Article  CAS  Google Scholar 

  15. Radko, M., Kowalczyk, A., Mikrut, P., Witkowski, S., Mozgawa, W., Macyk, W., and Chmielarz, L., RSC Adv., 2020, vol. 10, p. 4023. https://doi.org/10.1039/c9ra09903d

    Article  CAS  Google Scholar 

  16. Sato, K., Hyodo, M., Aoki, M., Zheng, X.Q., and Noyori, R., Tetrahedron, 2001, vol. 57, p. 2469. https://doi.org/10.1016/S0040-4020(01)00068-0

    Article  CAS  Google Scholar 

  17. Li, L.P. and Ye, B.H., Inorg. Chem., 2019, vol. 58, p. 7775. https://doi.org/10.1021/acs.inorgchem.9b00220

    Article  CAS  PubMed  Google Scholar 

  18. Bayat, Y., Shirini, F., and Jolodar, O.G., J. Mol. Liq., 2018, vol. 265, p. 517. https://doi.org/10.1016/j.molliq.2018.06.036

    Article  CAS  Google Scholar 

  19. Mojarrad, A.G. and Zakavi, S., Catal. Sci. Technol., 2018, vol. 8, p. 768. https://doi.org/10.1039/c7cy02308a

    Article  CAS  Google Scholar 

  20. Satter, M., Kumar, N., Yadav, P., Mandhar, Y., and Kumar, S., Chem. Asian J., 2019, vol. 14, p. 4807. https://doi.org/10.1002/asia.201901334

    Article  CAS  Google Scholar 

  21. Glidewell, C., Harrison, W.T.A., Low, J.N., Sime, J.G., and Wardell, J.L., Acta Crystallogr., Sect. B, 2001, vol. 57, p. 190. https://doi.org/10.1107/S0108768100015494

    Article  CAS  PubMed  Google Scholar 

  22. Liu, M.C., Ding, J.C., Fang, W., and Wu, H.Y., Z. Krist. New Cryst. St., 2005, vol. 220, p. 23. https://doi.org/10.1524/ncrs.2005.220.14.23

    Article  CAS  Google Scholar 

  23. Li, Y.S. and Su, W.K., Acta Crystallogr., Sect. E, 2005, vol. E61, p. o2450. https://doi.org/10.1107/S1600536805021434

  24. Rudolph, F.A.M., Fuller, A.L., Slawin, A.M.Z., Bühl, M., Aitken, R.A., and Woollins, J.D., J. Chem. Crystallogr., 2010, vol. 40, p. 253. https://doi.org/10.1007/s10870-009-9643-8

    Article  CAS  Google Scholar 

  25. O’Mahony, G.E., Ford, A., and Maguire, A.R., J. Org. Chem., 2012, vol. 77, p. 3288. https://doi.org/10.1021/jo2026178

    Article  CAS  PubMed  Google Scholar 

  26. Migita, T., Shimizu, T., Asami, Y., Shiobara, J., Kato, Y., and Kosugi, M., Bull Chem. Soc. Jpn., 1980, vol. 53, p. 1385. https://doi.org/10.1246/bcsj.53.1385

    Article  CAS  Google Scholar 

  27. She, J., Jiang, Z., and Wang, Y.G., Tetrahedron Lett., 2009, vol. 50, p. 593. https://doi.org/10.1016/j.tetlet.2008.11.082

    Article  CAS  Google Scholar 

  28. Kantam, M.L., Neelima, B., Reddy, C.V., Chaudhuri, M.K., and Dehury, S.K., Catal. Lett., 2004, vol. 95, p. 19. https://doi.org/10.1023/B:CATL.0000023716.77160.1f

    Article  CAS  Google Scholar 

  29. Smart and Saint+ for Windows NT (version 6.02a), Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

  30. Sheldrick, G.M., Sadabs, University of Göttingen, Göttingen, Germany, 1996.

  31. Sheldrick, G.M., Shelxtl, version 5.1, Software Reference Manual, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.

  32. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (21372007) and the Natural Science Foundation of Universities of Anhui Province (RD19100125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P.-Z. Zhang or Q.-F. Zhang.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WY., Chen, M., Zhang, PZ. et al. Vanadium-catalyzed Selective Oxidation of Sulfides to Sulfoxides and Sulfones with H2O2. Russ J Org Chem 57, 816–824 (2021). https://doi.org/10.1134/S1070428021050080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021050080

Keywords:

Navigation