Skip to main content

Advertisement

Log in

Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This work combines experimental atomic force microscopy (AFM) and density functional theory (DFT) simulations to study oxidized-metal (oxidized copper & titanium) and 2D-material (graphene & MoS2) interfaces. Combining AFM and DFT allowed identifying the interfacial interaction and established a correlation between tribological behavior, interfacial charge distribution, and variations in the potential energy profile with sliding along the metal/2D-materials interfaces. The TiO2 (rutile) and CuO (cupric oxide) metal oxides were mostly found to chemisorb along the interface with the 2D-materials. Both the metal-oxide counter-surfaces (TiO2 and CuO) exhibited higher friction force and adhesion on graphene than on MoS2. The CuO surface was inferred to be copper rich based on comparison with DFT simulations. The interfacial electronic charge distribution and relative energy change were identified to strongly influence sliding and adhesive behavior between oxidized-metal/2D-material contacts when considering only electronic effects in the DFT simulations. More homogenous interfacial charge distribution/sharing and lower surface energy variation, as found on the MoS2 surfaces, were identified to lower friction and adhesion. Non-electronic effects not captured by simulations were found to likely dominate interfacial shear strength measurements experimentally. Therefore, MoS2 should be used in interfacial applications involving TiO2 and copper-rich CuO surfaces requiring lower adhesion and friction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grandin, M., Wiklund, U.: Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials. Wear 398–399(December 2017), 227–235 (2018)

    Article  Google Scholar 

  2. Mu, M., Liang, J., Zhou, X., Xiao, Q.: One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties. Surf. Coat. Technol. 214, 124–130 (2013)

    Article  CAS  Google Scholar 

  3. Li, J.F., Zhang, L., Xiao, J.K., Zhou, K.C.: Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans. Nonferrous Met. Soc. China (English Ed.) 25(10), 3354–3362 (2015)

    Article  CAS  Google Scholar 

  4. Xu, Z.Y., Xu, Y., Hu, K.H., Xu, Y.F., Hu, X.G.: Formation and tribological properties of hollow sphere-like nano-MoS2 precipitated in TiO2 particles. Tribol. Int. 81, 139–148 (2015)

    Article  CAS  Google Scholar 

  5. Alghani, W., Ab Karim, M.S., Bagheri, S., Amran, N.A.M., Gulzar, M.: Enhancing the tribological behavior of lubricating oil by adding TiO2, graphene, and TiO2/graphene nanoparticles. Tribol. Trans. 62(3), 452–463 (2019)

    Article  CAS  Google Scholar 

  6. Luo, J., Jiang, S., Zhang, H., Jiang, J., Liu, X.: A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)

    Article  CAS  Google Scholar 

  7. Xin, X., Zhou, X., Wu, J., Yao, X., Liu, Z.: Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6(12), 11035–11043 (2012)

    Article  CAS  Google Scholar 

  8. Carrillo, I., Rangel, E., Magaña, L.F.: Adsorption of carbon dioxide and methane on graphene with a high titanium coverage. Carbon N. Y. 47(11), 2758–2760 (2009)

    Article  CAS  Google Scholar 

  9. Mai, Y.J., Wang, X.L., Xiang, J.Y., Qiao, Y.Q., Zhang, D., Gu, C.D., Tu, J.P.: CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 56(5), 2306–2311 (2011)

    Article  CAS  Google Scholar 

  10. Chen, F., Ying, J., Wang, Y., Du, S., Liu, Z., Huang, Q.: Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon N. Y. 96, 836–842 (2016)

    Article  CAS  Google Scholar 

  11. Chmielewski, M., Michalczewski, R., Piekoszewski, W., Kalbarczyk, M.: Tribological behavior of copper-graphene composite materials. Key Eng. Mater. 674, 219–224 (2016)

    Article  Google Scholar 

  12. Grandin, M., Wiklund, U.: Influence of mechanical and electrical load on a copper/copper-graphite sliding electrical contact. Tribol. Int. 121(September 2017), 1–9 (2018)

    Article  CAS  Google Scholar 

  13. Fonseca, A.F., Liang, T., Zhang, D., Choudhary, K., Phillpot, S.R., Sinnott, S.B.: Graphene-titanium interfaces from molecular dynamics simulations. ACS Appl. Mater. Interfaces 9(38), 33288–33297 (2017)

    Article  CAS  Google Scholar 

  14. Dong, H.S., Qi, S.J.: Realising the potential of graphene-based materials for biosurfaces—a future perspective. Biosurf. Biotribol. 1(4), 229–248 (2015)

    Article  Google Scholar 

  15. Xue, B., Liu, X., Shi, X., Huang, Y., Lu, G., Wu, C.: Effect of graphene nanoplatelets on tribological properties of titanium alloy matrix composites at varying sliding velocities. Mater. Res. Express 5(6), 066507 (2018)

    Article  Google Scholar 

  16. Hwang, B., Kim, W., Kim, J., Lee, S., Lim, S., Kim, S., Oh, S.H., Ryu, S., Han, S.M.: Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 17(8), 4740–4745 (2017)

    Article  CAS  Google Scholar 

  17. Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., et al.: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 1–7 (2013)

    Google Scholar 

  18. Adamska, L., Lin, Y., Ross, A.J., Batzill, M., Oleynik, I.I.: Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys. Rev. B 85(19), 1–8 (2012)

    Article  Google Scholar 

  19. Olsen, T., Thygesen, K.S.: Random phase approximation applied to solids, molecules, and graphene-metal interfaces: from van Der Waals to covalent bonding. Phys. Rev. B (2013). https://doi.org/10.1103/PhysRevB.87.075111

    Article  Google Scholar 

  20. Bagchi, S., Ke, C., Chew, H.B.: Oxidation effect on the shear strength of graphene on aluminum and titanium surfaces. Phys. Rev. B 98(17), 1–9 (2018)

    Article  Google Scholar 

  21. Dai, Y., Wu, X., Du, C., Deng, J., Hu, L., Hu, X.: Density functional calculation of transition metal adatom adsorption on graphene. Phys. B 405(16), 3337–3341 (2010)

    Article  Google Scholar 

  22. Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., Van Den Brink, J., Kelly, P.J.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79(19), 1–12 (2009)

    Article  Google Scholar 

  23. Williams, G., Seger, B., Kamat, P.V.: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Article  CAS  Google Scholar 

  24. Wolloch, M., Feldbauer, G., Mohn, P., Redinger, J., Vernes, A.: Ab initio friction forces on the nanoscale: a density functional theory study of Fcc Cu(111). Phys. Rev. B 90(19), 1–8 (2014)

    Article  Google Scholar 

  25. Wolloch, M., Levita, G., Restuccia, P., Righi, M.C.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121(2), 26804 (2018)

    Article  CAS  Google Scholar 

  26. Arif, T., Yadav, S., Colas, G., Singh, C.V., Filleter, T.: Understanding the independent and interdependent role of water and oxidation on the tribology of ultrathin molybdenum disulfide (MoS2). Adv. Mater. Interfaces 1901246, 1–9 (2019)

    Google Scholar 

  27. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., et al.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12(9), 798–801 (2013)

    Article  CAS  Google Scholar 

  28. Keil, P., Lützenkirchen-Hecht, D., Frahm, R.: Investigation of room temperature oxidation of Cu in air by Yoneda-XAFS. AIP Conf. Proc. 882, 490–492 (2007)

    Article  CAS  Google Scholar 

  29. Keil, P., Frahm, R., Lützenkirchen-Hecht, D.: Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: comparative investigation by specular and non-specular grazing incidence X-ray absorption spectroscopy. Corros. Sci. 52(4), 1305–1316 (2010)

    Article  CAS  Google Scholar 

  30. Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211(2), 395–400 (1999)

    Article  CAS  Google Scholar 

  31. Vazirisereshk, M.R., Ye, H., Ye, Z., Otero-de-la-Roza, A., Zhao, M.-Q., Gao, Z., Johnson, A.T.C., Johnson, E.R., Carpick, R.W., Martini, A.: Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett. 19(8), 5496–5505 (2019)

    Article  CAS  Google Scholar 

  32. Dong, H., Xu, Y., Zhang, C., Wu, Y., Zhou, M., Liu, L., Dong, Y., Fu, Q., Wu, M., Lei, Y.: MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage. Inorg. Chem. Front. 5(12), 3099–3105 (2018)

    Article  CAS  Google Scholar 

  33. Çakmak, G., Öztürk, T.: Continuous synthesis of graphite with tunable interlayer distance. Diam. Relat. Mater. 96, 134–139 (2019)

    Article  Google Scholar 

  34. Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)

    Article  CAS  Google Scholar 

  35. Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75(6), 1988–1996 (2004)

    Article  CAS  Google Scholar 

  36. Cannara, R.J., Eglin, M., Carpick, R.W.: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77(5), 053701 (2006)

    Article  Google Scholar 

  37. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., et al.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  38. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  39. Kresse, G., Joubert, D.: Kresse, Joubert—unknown—from ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 11–19 (1999)

    Article  Google Scholar 

  40. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–65 (2011)

    Article  CAS  Google Scholar 

  41. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Article  Google Scholar 

Download references

Funding

Hart Professorship, Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobin Filleter or Chandra Veer Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Arif, T., Wang, G. et al. Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts. Tribol Lett 69, 91 (2021). https://doi.org/10.1007/s11249-021-01464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01464-4

Keywords

Navigation