Skip to main content
Log in

Effect of multiple impeller designs and configurations on the droplet size and uniformity in a 100 L scale stirred tank

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effect of multiple impeller designs and configurations on the Sauter mean diameter and the uniformity of droplet size in a 100 L scale stirred tank. By using a borescope installed inside the tank, droplet images of a highly turbid liquid-liquid system were captured even at high impeller speeds, and by adjusting the borescope position, it could be observed how the droplet size changed depending on the position. The area of the flow pattern produced by the impeller was taken as an impeller region, and it explained well the change in the droplet size due to the varying liquid phase volume and impeller spacing. In addition, the change of the Sauter mean diameter and the droplet size uniformity was also elucidated by the variation of the impeller diameter, blade angle, and number of impellers. All three parameters showed a decrease in the deviation between droplet sizes as they increased, but increasing the impeller diameter was the most effective in reducing the Sauter mean diameter itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

bottom clearance of the lower impeller [cm]

D:

reactor diameter [cm]

DI :

impeller diameter [cm]

di :

droplet diameter [cm]

d32 :

Sauter mean diameter [cm]

H:

liquid phase height [cm]

M:

torque of the impeller [N m]

N:

impeller speed [s−1]

NI :

number of impellers [−]

ni :

number of droplets

P:

power consumption [W]

R:

:impeller zone radius [cm]

S:

impeller spacing [cm]

T:

top clearance of the upper impeller [cm]

V:

liquid phase volume [L]

VI :

impeller zone volume [L]

W:

impeller blade width [cm]

\(\overline \varepsilon \) :

mean energy dissipation rate [W kg−1]

θ :

impeller blade angle of the upper impeller [°]

ϕ :

organicphase holdup [−]

References

  1. C. Joshi and R. S. Singhal, Korean J. Chem. Eng., 35, 195 (2018).

    Article  CAS  Google Scholar 

  2. H. Im, J. Park and J. W. Lee, Korean J. Chem. Eng., 36, 1680 (2019).

    Article  CAS  Google Scholar 

  3. J. W. Lee, Y. C. Ko, Y. K. Jung, K. S. Lee and E. S. Yoon, Comput. Chem. Eng., 21, S1105 (1997).

    Article  CAS  Google Scholar 

  4. J.-R. Lee, N. Hasolli, K.-S. Lee, K.-Y. Lee and Y.-O. Park, Korean J. Chem. Eng., 36, 1548 (2019).

    Article  CAS  Google Scholar 

  5. A. Wongkia, K. Suriye, A. Nonkhamwong, P. Praserthdam and S. Assabumrungrat, Korean J. Chem. Eng., 30, 593 (2013).

    Article  CAS  Google Scholar 

  6. J. A. Rocha-Valadez, M. Hassan, G. Corkidi, C. Flores, E. Galindo and L. Serrano-Carreón, Biotechnol. Bioeng., 91, 54 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. D. E. Bergbreiter and S. D. Sung, Adv. Synth. Catal., 348, 1352 (2006).

    Article  CAS  Google Scholar 

  8. J. Park, S. Lee and J. W. Lee, Ind. Eng. Chem. Res., 57, 2310 (2018).

    Article  CAS  Google Scholar 

  9. J. H. Lee, H. U. Lee, J. H. Lee, S. K. Lee, H. Y. Yoo, C. Park and S. W. Kim, Korean J. Chem. Eng., 36, 71 (2019).

    Article  CAS  Google Scholar 

  10. C. Desnoyer, O. Masbernat and C. Gourdon, Chem. Eng. Sci., 58, 1353 (2003).

    Article  CAS  Google Scholar 

  11. M. Kraume, A. Gäbler and K. Schulze, Chem. Eng. Technol., 27, 330 (2004).

    Article  CAS  Google Scholar 

  12. S. Lee and A. Varma, AIChE J., 61, 2228 (2015).

    Article  CAS  Google Scholar 

  13. L. Böhm, L. Hohl, C. Bliatsiou and M. Kraume, Chem. Ing. Tech., 91, 1724 (2019).

    Article  Google Scholar 

  14. A. Gäbler, M. Wegener, A. Paschedag and M. Kraume, Chem. Eng. Sci., 61, 3018 (2006).

    Article  Google Scholar 

  15. D. Pinelli, A. Bakker, K. Myers, M. Reeder, J. Fasano and F. Magelli, Chem. Eng. Res. Des., 81, 448 (2003).

    Article  CAS  Google Scholar 

  16. S. Maaß, T. Rehm and M. Kraume, Chem. Eng. J., 168, 827 (2011).

    Article  Google Scholar 

  17. N. Hardy, F. Augier, A. W. Nienow, C. Béal and F. B. Chaabane, Chem. Eng. Sci., 172, 158 (2017).

    Article  CAS  Google Scholar 

  18. D. Gu, Z. Liu, C. Xu, J. Li, C. Tao and Y. Wang, Chem. Eng. Process., 118, 37 (2017).

    Article  CAS  Google Scholar 

  19. V. Mishra and J. Joshi, Chem. Eng. Res. Des., 72, 657 (1994).

    CAS  Google Scholar 

  20. M. Cai, X. Zhou, J. Lu, W. Fan, C. Niu, J. Zhou, X. Sun, L. Kang and Y. Zhang, Bioresour. Technol., 102, 3584 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. F. Magelli, G. Montante, D. Pinelli and A. Paglianti, Chem. Eng. Sci., 101, 712 (2013).

    Article  CAS  Google Scholar 

  22. R. Darvishi, M. N. Esfahany and R. Bagheri, Ind. Eng. Chem. Res., 54, 10953 (2015).

    Article  CAS  Google Scholar 

  23. M. Ruiz, P. Lermanda and R. Padilla, Hydrometallurgy, 63, 65 (2002).

    Article  CAS  Google Scholar 

  24. J. Ritter and M. Kraume, Chem. Eng. Technol., 23, 579 (2000).

    Article  CAS  Google Scholar 

  25. W. M. Haynes, D. R. Lide and T. J. Bruno, CRC handbook of chemistry and physics, CRC Press, Boca Raton, Florida (2017).

    Google Scholar 

  26. M. Laliberté, J. Chem. Eng. Data, 52, 321 (2007).

    Article  Google Scholar 

  27. N. Vargaftik, B. Volkov and L. Voljak, J. Phys. Chem. Ref. Data, 12, 817 (1983).

    Article  CAS  Google Scholar 

  28. H. Girault, D. Schiffrin and B. Smith, J. Colloid Interface Sci., 101, 257 (1984).

    Article  CAS  Google Scholar 

  29. J. Lovick, A. Mouza, S. Paras, G. Lye and P. Angeli, J. Chem. Technol. Biotechnol., 80, 545 (2005).

    Article  CAS  Google Scholar 

  30. B. Letellier, C. Xuereb, P. Swaels, P. Hobbes and J. Bertrand, Chem. Eng. Sci., 57, 4617 (2002).

    Article  CAS  Google Scholar 

  31. S. Okufi, E. P. De Ortiz and H. Sawistowski, Can. J. Chem. Eng., 68, 400 (1990).

    Article  CAS  Google Scholar 

  32. P. Jüsten, G. Paul, A. Nienow and C. Thomas, Biotechnol. Bioeng., 52, 672 (1996).

    Article  PubMed  Google Scholar 

  33. G. Zhou and S. M. Kresta, Chem. Eng. Sci., 53, 2063 (1998).

    Article  CAS  Google Scholar 

  34. A. Amanullah, B. C. Buckland and A. W. Nienow, Handbook of industrial mixing Science and practice, John Wiley & Sons Inc., Hoboken, New Jersey, 1071 (2004).

    Google Scholar 

  35. W. McManamey, Chem. Eng. Sci., 34, 432 (1979).

    Article  CAS  Google Scholar 

  36. K. Rutherford, K. Lee, S. Mahmoudi and M. Yianneskis, AIChE J., 42, 332 (1996).

    Article  CAS  Google Scholar 

  37. P. R. Gogate, A. A. Beenackers and A. B. Pandit, Biochem. Eng. J., 6, 109 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. V. Hudcova, V. Machon and A. Nienow, Biotechnol. Bioeng., 34, 617 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. C. Baudou, C. Xuereb and J. Bertrand, Can. J. Chem. Eng., 75, 653 (1997).

    Article  CAS  Google Scholar 

  40. A. Pacek, S. Chamsart, A. Nienow and A. Bakker, Chem. Eng. Sci., 54, 4211 (1999).

    Article  CAS  Google Scholar 

  41. L. A. Cutter, AIChE J., 12, 35 (1966).

    Article  CAS  Google Scholar 

  42. H. Wu and G. Patterson, Chem. Eng. Sci., 44, 2207 (1989).

    Article  CAS  Google Scholar 

  43. J. Sheng, H. Meng and R. Fox, Chem. Eng. Sci., 55, 4423 (2000).

    Article  CAS  Google Scholar 

  44. E. L. Paul, V. A. Atiemo-Obeng and S. M. Kresta, Handbook of industrial mixing Science and practice, John Wiley & Sons Inc., Hoboken (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Ahan, W. & Lee, J.W. Effect of multiple impeller designs and configurations on the droplet size and uniformity in a 100 L scale stirred tank. Korean J. Chem. Eng. 38, 1348–1357 (2021). https://doi.org/10.1007/s11814-021-0803-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0803-7

Keywords

Navigation