Skip to main content
Log in

Chito-oligosaccharide production by chitinase of Streptococcus macrosporeus VTCC 940003 and their inhibition activities on Botrytis cinerea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Detection of chitinase activity after electrophoresis in native polyacrylamide gels containing glycol chitin showed that Streptomyces macrosporeus VTCC 940003 produced several chitinases. Chito-oligosaccharides (COS) were produced from commercial chitosan using these chitinases. The degree of polymerization (DP) of the produced COS was confirmed by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). Moreover, the biological activities of the COS against Botrytis cinerea in vitro and in vivo were assessed. The COS preparation contained a mixture of oligomers with DP ranging from 2 to 10. The COS also showed inhibition activities on spore germination, mycelial growth and infection of B. cinerea on tomato leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badawy, M.E.I., & Rabea, E.I. (2017). Chitosan and its modifications as biologically active compounds in different applications. In M. Masuell, D. Renard (Eds.), Advances in physicochemical properties of biopolymers (pp. 1–108). Bentham e-Books. Bentham Science Publishers, Sharjah, ISBN: 978–1–68,108-545-6.

  • Cabrera, J. C., & Cutsem, P. V. (2005). Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal, 25, 165–172.

    Article  CAS  Google Scholar 

  • Das, S. N., Madhuprakash, J., Sarma, P., Purushotham, P., Suma, K., Manjeet, K., & Podile, A. R. (2013). Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology, 35(1), 29–43.

    Article  Google Scholar 

  • Ghaouth, A. E., Asselin, J. A., & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96(9), 769–779.

    Article  Google Scholar 

  • Karpova, N., Shagdarova, B., Lunkov, A., Il’ina, A., & Varlamov, V. (2021). Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Biotechnology Letters. https://doi.org/10.1007/s10529-021-03138-6.

  • Kawase, T., Yokokawa, S., Saito, A., Fujii, T., Nikaidou, N., Miyashita, K., & Watanabe, T. (2006). Comparison of enzymatic and antifungal properties between family 18 and 19 chitinase from S. coelicolor A3(2). Bioscience, Biotechnology, and Biochemistry, 70, 988–998.

    Article  CAS  Google Scholar 

  • Kim, S., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymymers, 62, 357–368.

    Article  CAS  Google Scholar 

  • Kim, J. K., Yang, J. Y., & Kim, G. J. (2003). Purification and characterization of chitinase from Streptomyces sp. M-20. Journal of Biochemistry and Molecular Biology, 36(2), 185–189.

    CAS  PubMed  Google Scholar 

  • Koo, C. J., Lee, Y. S., Chun, J. H., Cheong, H. Y., Choi, S. J., Kawabata, S., Miyagi, M., Tsunasawa, S., Ha, S. K., Bae, W. D., Han, C., Lee, L. B., & Cho, J. M. (1998). Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochimica et Biophysica Acta, 1382, 80–90.

    Article  CAS  Google Scholar 

  • Liaqat, F., & Eltem, R. (2018). Chitooligosaccharides and their biological activities: A comprehensive. Review. Carbohydrate Polymers, 184, 243–259.

    Article  CAS  Google Scholar 

  • Mallakuntla, K. M., Vaikuntapu, R. P., Bhuvanachandra, N. S. B., & Podile, R. A. (2017). Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Scientific Reports, 7, 5113. https://doi.org/10.1038/s41598-017-05140-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan oligosaccharides on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymymers, 81, 70–75.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Montillaa, A., Ruiz-Matutea, A. I., Corzoa, N., Giacominib, C., & Irazoquib, G. (2013). Enzymatic generation of chitooligosaccharides from chitosan using soluble and immobilized glycosyltransferase (Branchzyme®). Journal of Agriculture and Food Chemistry, 61(43), 10,360–10,367.

    Article  Google Scholar 

  • Moon, C., Seo, J. D., Song, S. Y., Hong, H. S., Choi, H. S., & Jung, J. V. (2017). Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microbiol Pathogenesis, 113, 218–224.

    Article  CAS  Google Scholar 

  • Olicón-Hernández, R. D., Vázquez-Landaverde, A. P., Cruz-Camarillo, R., Rojas-Avelizapa, I. L., Tomas, S., & Hidalgo, M. D. (2016). Comparison of chitooligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of Bacillus thuringiensis. Preparative Biochemistry & Biotechnology, 47, 116–122. https://doi.org/10.1080/10826068.2016.1181086.

    Article  CAS  Google Scholar 

  • Rahman, M. H., Shovan, L. R., Hjeljord, L. G., Aam, B. B., Eijsink, V. G. H., & S⌀rlie, M., Tronsmo, A. (2014). Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PloS ONE, 9(4), e93192. https://doi.org/10.1371/journal.pone.0093192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, M. H., Hjeljord, L. G., Aam, B. B., & S⌀rlie, M., Tronsmo, A. (2015). Antifungal effect of chito-oligosaccharides with different degrees of polymerization. European Journal of Plant Patholology, 141, 147–158.

    Article  CAS  Google Scholar 

  • Singh, V., Haque, S., Singh, H., Verma, Vibha, J. K., Singh, R., Jawed, A., & Tripath, C. K. M. (2016). Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Frontiers in Microbiology, 7, 1921. https://doi.org/10.3389/fmicb.2016.01921.

    Article  PubMed  PubMed Central  Google Scholar 

  • SØrbotten, A., Horn, S. J., Eijsink, V. G. H., & Vårum, K. M. (2005). Degradation of chitosans with chitinase B from Serratia marcescens. FEBS Journal, 272, 538–549.

    Article  Google Scholar 

  • Sun, G., Yang, Q., Zhang, A., Guo, J., Liu, X., Wang, Y., & Ma, Q. (2018). Synergistic effect of the combined bio-fungicides ε-poly-L-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. International Journal of Food Microbiology, 276, 46–53.

    Article  CAS  Google Scholar 

  • Trudel, J., & Asselin, A. (1989). Detection of chitinase activity after polyacrylamide gel electrophoresis. Analytical Biochemistry, 178(2), 362–636.

  • Van Aubel, G., Cambier, P., Dieu, M., & Van Cutsem, P. (2016). Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid. Plant Science, 247, 60–70.

    Article  Google Scholar 

  • Williamson, B., Tudzynski, B., Tudzynski, L. P., & Vankan, L. A. J. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561–580.

    Article  CAS  Google Scholar 

  • Zhang, H., Du, Y., Yu, X., Mitsutomi, M., & Aiba, S. (1999). Preparation of chito-oligosaccharides from chitosan by a complex enzyme. Carbohydrate Research, 320, 257–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the grant “Scale-up production of chitosan oligomer from shrimp shells waste to be used in plant protection”, code QG.16.87 of Vietnam National University, Hanoi. The support from Walloniae-Brussels International through the grant “Industrialisation de la production d’un biopesticide pour la protection de cultures de légumes au Vietnam” (Project 13, period 2016–2018) was also greatly appreciated.

Data availability

Not applicable.

Code availability

Not applicable.

Funding

the financial support: i) of the grant “Scale-up production of chitosan oligomer from shrimp shells waste to be used in plant protection”, code QG.16.87 of Vietnam National University, Hanoi; ii) Walloniae-Brussels International through the grant „ Industrialisation de la production d’un biopesticide pour la protection de cultures de légumes au Vietnam“(Project 13, period 2016–2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinh Van Hoang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, T.T.V., Uyen, N.Q., Hop, D.V. et al. Chito-oligosaccharide production by chitinase of Streptococcus macrosporeus VTCC 940003 and their inhibition activities on Botrytis cinerea. Eur J Plant Pathol 161, 185–193 (2021). https://doi.org/10.1007/s10658-021-02313-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02313-9

Keywords

Navigation