Skip to main content
Log in

On the Slightly Perturbed De Gregorio Model on \(S^1\)

  • Original Article
  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

It is conjectured that the generalization of the Constantin–Lax–Majda model (gCLM) \(\omega _t + a u\omega _x = u_x \omega \), due to Okamoto, Sakajo and Wunsch, can develop a finite time singularity from smooth initial data for \(a < 1\). For the endpoint case where a is close to and less than 1, we prove finite time asymptotically self-similar blowup of gCLM on a circle from a class of smooth initial data. For the gCLM on a circle with the same initial data, if the strength of advection a is slightly larger than 1, we prove that the solution exists globally with \(|| \omega (t)||_{H^1}\) decaying in a rate of \(O(t^{-1})\) for large time. The transition threshold between two different behaviors is \(a=1\), which corresponds to the De Gregorio model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Castro, A., Córdoba, D.: Infinite energy solutions of the surface quasi-geostrophic equation. Adv. Math. 225(4), 1820–1829, 2010

    Article  MathSciNet  Google Scholar 

  2. Chen, J.: Singularity formation and global well-posedness for the generalized Constantin–Lax–Majda equation with dissipation. Nonlinearity 33(5), 2502, 2020

    Article  ADS  MathSciNet  Google Scholar 

  3. Chen, J., Hou, T.Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. Commun. Math. Phys. 383(3), 1559–1667, 2021

    Article  ADS  Google Scholar 

  4. Chen, J., Hou, T.Y., Huang, D.: On the finite time blowup of the De Gregorio model for the 3D Euler equations. Commun. Pure Appl. Math. 74(6), 1282–1350, 2021

    Article  MathSciNet  Google Scholar 

  5. Choi, K., Hou, T.Y., Kiselev, A., Luo, G., Sverak, V., Yao, Y.: On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations. CPAM 70(11), 2218–2243, 2017

    MATH  Google Scholar 

  6. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. CPAM 38(6), 715–724, 1985

    ADS  MathSciNet  MATH  Google Scholar 

  7. Córdoba, A., Córdoba, D., Fontelos, M.A.: Formation of singularities for a transport equation with nonlocal velocity. Ann. Math. 162, 1377–1389, 2005

    Article  MathSciNet  Google Scholar 

  8. De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59(5–6), 1251–1263, 1990

    Article  ADS  MathSciNet  Google Scholar 

  9. De Gregorio, S.: A partial differential equation arising in a 1D model for the 3D vorticity equation. Math. Methods Appl. Sci. 19(15), 1233–1255, 1996

    Article  MathSciNet  Google Scholar 

  10. Elgindi, T.M.: Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \(R^3\). arXiv:1904.04795, 2019.

  11. Elgindi, T.M., Ghoul, T.-E., Masmoudi, N.: Stable self-similar blowup for a family of nonlocal transport equations. arXiv:1906.05811, 2019.

  12. Elgindi, T.M., Jeong, I.-J.: On the effects of advection and vortex stretching. Arch. Ration. Mech. Anal. 235, 1763–1817, 2019

    Article  MathSciNet  Google Scholar 

  13. Hou, T.Y., Lei, Z.: On the stabilizing effect of convection in three-dimensional incompressible flows. Commun. Pure Appl. Math. 62(4), 501–564, 2009

    Article  MathSciNet  Google Scholar 

  14. Hou, T.Y., Li, C.: Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. Commun. Pure Appl. Math. 61(5), 661–697, 2008

    Article  MathSciNet  Google Scholar 

  15. Jia, H., Stewart, S., Sverak, V.: On the de gregorio modification of the Constantin–Lax–Majda model. Arch. Ration. Mech. Anal. 231(2), 1269–1304, 2019

    Article  MathSciNet  Google Scholar 

  16. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907, 1988

    Article  MathSciNet  Google Scholar 

  17. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675, 2006

    Article  ADS  MathSciNet  Google Scholar 

  18. Landman, M.J., Papanicolaou, G.C., Sulem, C., Sulem, P.L.: Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A 38(8), 3837, 1988

    Article  ADS  MathSciNet  Google Scholar 

  19. Lei, Z., Liu, J., Ren, X.: On the Constantin–Lax–Majda model with convection. Commun. Math. Phys. 375, 1–19, 2019

    MathSciNet  MATH  Google Scholar 

  20. Lushnikov, P.M., Silantyev, D.A., Siegel, M.: Collapse vs. blow up and global existence in the generalized Constantin–Lax–Majda equation. arXiv preprint arXiv:2010.01201, 2020.

  21. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton. Acta Math. 212(1), 59–140, 2014

    Article  MathSciNet  Google Scholar 

  22. McLaughlin, D.W., Papanicolaou, G.C., Sulem, C., Sulem, P.L.: Focusing singularity of the cubic Schrödinger equation. Phys. Rev. A 34(2), 1200, 1986

    Article  ADS  Google Scholar 

  23. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 161, 157–222, 2005

  24. Merle, F., Zaag, H.: Stability of the blow-up profile for equations of the type \(u_t= \delta u + | u|^{ p- 1} u \). Duke Math. J. 86(1), 143–195, 1997

    Article  MathSciNet  Google Scholar 

  25. Merle, F., Zaag, H.: On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Commun. Math. Phys. 333(3), 1529–1562, 2015

    Article  ADS  MathSciNet  Google Scholar 

  26. Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin–Lax–Majda equation. Nonlinearity 21(10), 2447–2461, 2008

    Article  ADS  MathSciNet  Google Scholar 

  27. Okamoto, H., Sakajo, T., Wunsch, M.: Steady-states and traveling-wave solutions of the generalized Constantin–Lax–Majda equation. Discrete Contin. Dyn. Syst. A 34(8), 3155, 2014

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Thomas Hou for helpful comments on an earlier version of this work. We would also like to thank the referee for the constructive comments on the original manuscript, which improve the quality of our paper. This research was supported in part by Grants DMS-1907977 and DMS-1912654 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Chen.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Lemma A.1

Suppose that \(f \in L^2( (\sin \frac{x}{2})^{-2} )\). We have

$$\begin{aligned} \int _{S^1} \cot \frac{x}{2} \cdot f \cdot Hf \,{\mathrm{d}}x = - \pi H f(0)^2. \end{aligned}$$
(3.9)

Proof

Firstly, we consider \(f \in C^{\infty }\). Using the Tricomi identity of the Hilbert transform (see for example [4, 12]), we obtain

$$\begin{aligned} \int _{S^1} \cot \frac{x}{2} f \cdot Hf \,{\mathrm{d}}x = - 2 \pi H( f \cdot Hf)(0) = - \pi ( (Hf(0))^2 - f(0)^2). \end{aligned}$$

Since \(f \in L^2( ( \sin \frac{x}{2})^{-2} )\), we have \(f(0) = 0\) and obtain (A.1) for \(f \in C^{\infty }\). For general f, we can find a sequence \(f_n \in C^{\infty }\) such that \(f_n \rightarrow f\) in \(L^2( ( \sin \frac{x}{2})^{-2} )\). Clearly, we have \(H f_n \rightarrow Hf \) and \(f_n \cot \frac{x}{2} \rightarrow f \cot \frac{x}{2}\) in \(L^2\). Using the Cauchy–Schwarz inequality, we get \( Hf_n(0) \rightarrow Hf(0)\). Applying (A.1) to \(f_n\) and then taking \(n\rightarrow \infty \) concludes the proof. \(\square \)

Next, we prove Lemmas 2.6 and 2.7 .

Proof of Lemma 2.6

Applying integration by parts yields

$$\begin{aligned} \begin{aligned} D_x Hf(x)&=\frac{1}{2\pi } \int \sin x \cdot f(y) \cdot \partial _x \cot \frac{x-y}{2} \,{\mathrm{d}}y\\&= -\frac{1}{2\pi } \int \sin x \cdot f(y) \partial _y \cot \frac{x-y}{2} \,{\mathrm{d}}y \\&= \frac{1}{2\pi } \int \sin x \cdot f_y(y) \cot \frac{x-y}{2} \,{\mathrm{d}}y . \\ \end{aligned} \end{aligned}$$

It follows

$$\begin{aligned} \begin{aligned} D_x H f(x) - H(D_x f )(x)&= \frac{1}{2\pi } \int (\sin x -\sin y) f_y(y) \cot \frac{x-y}{2} \,{\mathrm{d}}y \\ \end{aligned} \end{aligned}$$

Note that \((\sin x - \sin y) \cot \frac{x-y}{2} = 2 \sin \frac{x-y}{2} \cos \frac{x+y}{2} \cot \frac{x-y}{2} = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} = \cos x + \cos y.\) We conclude

$$\begin{aligned} D_x H f(x) - H(D_x f )(x) = \frac{1}{2\pi } \int (\cos x + \cos y) f_y(y) \,{\mathrm{d}}y = \frac{1}{2\pi } \int \sin y \cdot \omega (y) \,{\mathrm{d}}y. \end{aligned}$$

\(\square \)

Proof of Lemma 2.7

Using the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \Big |\frac{ \omega }{\sin \frac{x}{2}} \Big |= \frac{1}{ |\sin \frac{x}{2}| } |\int _0^x \omega _x \,{\mathrm{d}}x | \lesssim \frac{1}{ |\sin \frac{x}{2}| } (\int _0^x \sin ^2 \frac{x}{2} \,{\mathrm{d}}x )^{1/2} || \omega ||_{{{\mathcal {H}}}} \lesssim || \omega ||_{{{\mathcal {H}}}} \end{aligned}$$

for any \( x \in S^1\), which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J. On the Slightly Perturbed De Gregorio Model on \(S^1\). Arch Rational Mech Anal 241, 1843–1869 (2021). https://doi.org/10.1007/s00205-021-01685-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01685-w

Navigation