Skip to main content
Log in

Comparison of Coupled Eulerian–Lagrangian and Coupled Smoothed Particle Hydrodynamics–Lagrangian in Fluid–Structure Interaction Applied to Metal Cutting

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate a fluid–structure interaction problem, in which the chip formation and the fluid flow are coupled. Two simulation methods are developed in the commercial finite-element code ABAQUS/Explicit: the coupled Smoothed Particle Hydrodynamics–Lagrangian (SPH-L) approach and the coupled Eulerian–Lagrangian (CEL) approach. The models combine the Lagrangian approach to model the structure and the SPH/Eulerian approach to model the fluid. The simulation results are compared to analyze the advantages and limitations of the two simulation methods. The mechanical and thermal effects induced by the coolant are investigated apart. A proper user subroutine is developed to apply the heat transfer by convection induced by the fluid. The validation of the proposed models is carried out by comparing the predicted results with the experimental evidence. In general, both models show a great capability of modeling the cutting process. The percentage error between the experimental and predicted cutting forces and chip geometry is lower than 5% and 30%, respectively. The required CPU time to simulate 1.8 ms real-time simulation is 5 h 8 min with the CEL approach and 6 h 48 min with the coupled SPH-L approach. It is also found that the temperature distribution along the tool rake face is significantly decreased by up to 310 °C under the CEL approach and by up to 230 °C under the coupled SPH-L approach. However, the temperature at the tool tip recorded under both techniques is not affected and keeps a near constant value around 720 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arrazola, P.J.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I.S.: Recent advances in modelling of metal machining processes. CIRP Ann. 62, 695–718 (2013). https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  2. Shet, C.; Deng, X.; Bayoumi, A.E.: Finite element simulation of high-pressure water-jet assisted metal cutting. Int. J. Mech. Sci. 45, 1201–1228 (2003). https://doi.org/10.1016/S0020-7403(03)00142-5

    Article  Google Scholar 

  3. Courbon, C.; Sajn, V.; Kramar, D.; Rech, J.; Kosel, F.; Kopac, J.: Investigation of machining performance in high pressure jet assisted turning of Inconel 718: a numerical model. J. Mater. Process. Technol. 211, 1834–1851 (2011). https://doi.org/10.1016/j.jmatprotec.2011.06.006

    Article  Google Scholar 

  4. Pu, Z.; Umbrello, D.; Dillon, O.W.; Jawahir, I.S.: Finite element simulation of residual stresses in cryogenic machining of AZ31B Mg Alloy. Procedia CIRP 13, 282–287 (2014). https://doi.org/10.1016/j.procir.2014.04.048

    Article  Google Scholar 

  5. Rotella, G.; Umbrello, D.: Numerical simulation of surface modification in dry and cryogenic machining of AA7075 alloy. Procedia CIRP 13, 327–332 (2014). https://doi.org/10.1016/j.procir.2014.04.055

    Article  Google Scholar 

  6. Umbrello, D.; Caruso, S.; Imbrogno, S.: Finite element modelling of microstructural changes in dry and cryogenic machining AISI 52100 steel. Mater. Sci. Technol. 32, 1062–1070 (2016). https://doi.org/10.1080/02670836.2015.1104085

    Article  Google Scholar 

  7. Hadzley, A.B.M.; Izamshah, R.; Sarah, A.S.; Fatin, M.N.: Finite element model of machining with high pressure coolant for Ti–6Al–4V alloy. Procedia Eng. 53, 624–631 (2013). https://doi.org/10.1016/j.proeng.2013.02.080

    Article  Google Scholar 

  8. Ayed, Y.; Robert, C.; Germain, G.; Ammar, A.: Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining. Finite Elem. Anal. Des. 108, 1–8 (2016). https://doi.org/10.1016/j.finel.2015.09.003

    Article  Google Scholar 

  9. Niu, W.; Mo, R.; Liu, G.R.; Sun, H.; Dong, X.: Modeling of orthogonal cutting process of A2024–T351 with an improved SPH method. The International Journal of Advanced Manufacturing Technology (2017). https://doi.org/10.1007/s00170-017-1253-6

    Article  Google Scholar 

  10. Ben Belgacem, I.; Cheikh, L.; Barhoumi, E.M.; Khan, W.; Ben Salem, W.: Numerical analysis of the behavior of a new aeronautical alloy (Ti555–03) under the effect of a high-speed water jet. China Ocean Eng. 33, 114–126 (2019). https://doi.org/10.1007/s13344-019-0012-x

    Article  Google Scholar 

  11. Ben Belgacem, I.; Cheikh, L.; Barhoumi, E.M.; Khan, W.; Ben Salem, W.: Validation of SPH-FE numerical modeling of the interaction between a high-speed water jet and a PMMA target by cel model and experimental study. Int. J. Nonlinear Sci. Numer. Simul. 21, 227–238 (2020). https://doi.org/10.1515/ijnsns-2017-0282

    Article  MATH  Google Scholar 

  12. Hassoon, O.H.; Tarfaoui, M.; El Moumen, A.; Qureshi, Y.; Benyahia, H.; Nachtane, M.: Mechanical performance evaluation of sandwich panels exposed to slamming impacts: comparison between experimental and SPH results. Compos. Struct. 220, 776–783 (2019). https://doi.org/10.1016/j.compstruct.2019.04.051

    Article  Google Scholar 

  13. Messahel, R.; Rochelle, L. : ALE and SPH formulations for fluid structure interaction: shock waves impact. Université de Lille 1 – Sciences et Technologies Ecole (2016)

  14. Dong, X.; Huang, X.; Liu, J.: Modeling and simulation of droplet impact on elastic beams based on SPH. Eur. J. Mech. A/Solids. 75, 237–257 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.026

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, G.; Wang, G.; Lu, W.; Yan, P.; Chen, M.; Wu, X.: A SPH-Lagrangian–Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion. KSCE J. Civ. Eng. 22, 3085–3101 (2018). https://doi.org/10.1007/s12205-017-0610-1

    Article  Google Scholar 

  16. Spear, D.G.; Palazotto, A.N.; Kemnitz, R.A.: Modeling and simulation techniques used in high strain rate projectile impact. Mathematics 9, 274 (2021). https://doi.org/10.3390/math9030274

    Article  Google Scholar 

  17. Reimer, P.; Zehetner, C.; Hammelmüller, F.; Kunze, W.: Numerical modelling and simulation of sheet metal cutting processes. In: Proc. VII Eur. Congr. Comput. Methods Appl. Sci. Eng. (ECCOMAS Congr. 2016), Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, Athens, pp. 7749–7756 (2016). https://doi.org/10.7712/100016.2370.10183

  18. Qi, L.; Liu, Z.; Xu, H.; Deng, H.; Li, C.: Analysis of the Structure Suffered Submarine Landslides Using SPH and CEL methods. IOP Conf. Ser. Earth Environ. Sci. 171, 012003 (2018). https://doi.org/10.1088/1755-1315/171/1/012003

    Article  Google Scholar 

  19. Ayed, Y.: Approches expérimentales et numériques de l’usinage assisté jet d’eau haute pression : étude des mécanismes d’usure et contribution à la modélisation multi-physiques de la coupe, École Nationale Supérieure d’Arts et Métiers (2014)

  20. Ayed, Y.; Germain, G.; Ammar, A.; Furet, B.: Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. Int. J. Adv. Manuf. Technol. 90, 1593–1603 (2017). https://doi.org/10.1007/s00170-016-9476-5

    Article  Google Scholar 

  21. Teixeira, C.; Rey, M.C.: Étude expérimentale et modélisation des évolutions microstructurales au cours des traitements thermiques post forgeage dans l’alliage de titane Ti17, 2005. Laboratoire de Science et Génie des Matériaux et de Métallurgie

  22. Rohsenow, Y.; Hartnett, W.M.; Cho, J.R.: Handbook of heat transfer, vol. 1 (1998)

  23. Xiong, Y.; Wang, W.; Jiang, R.; Lin, K.; Shao, M.: Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC. Materials (Basel) (2018). https://doi.org/10.3390/ma11040606

    Article  Google Scholar 

  24. Calamaz, M.; Coupard, D.; Girot, F.: A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int. J. Mach. Tools Manuf. 48, 275–288 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  25. Akram, S.; Jaffery, S.H.I.; Khan, M.; Fahad, M.; Mubashar, A.; Ali, L.: Numerical and experimental investigation of Johnson-Cook material models for aluminum (AL 6061–t6) alloy using orthogonal machining approach. Adv. Mech. Eng. 10, 1–14 (2018). https://doi.org/10.1177/1687814018797794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haithem Khochtali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khochtali, H., BenBelgacem, I., Zemzemi, F. et al. Comparison of Coupled Eulerian–Lagrangian and Coupled Smoothed Particle Hydrodynamics–Lagrangian in Fluid–Structure Interaction Applied to Metal Cutting. Arab J Sci Eng 46, 11923–11936 (2021). https://doi.org/10.1007/s13369-021-05737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05737-x

Keywords

Navigation