Skip to main content

Advertisement

Log in

Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Rapid development in wearable electronics has brought huge convenience to human life and gradually penetrated into various indispensable fields, such as health monitoring, medical assistance, smart sports, object tracking and smart home, etc. However, the suitable energy supply system for these wearable electronics remains an important issue to address. Fiber and textile triboelectric nanogenerators (f/t-TENGs), capable of converting biomechanical energy into electricity, have promising features to act as a mobile sustainable power source for wearable electronics or directly serve as an intelligent self-powered sensing solution. Compared with the low-output piezoelectric nanogenerators, hard-to-wear electromagnetic generators and other bulk TENGs, the fiber/textile TENG may be the best type of wearable human mechanical energy harvester at present. Herein, this review comprehensively introduces the recent progress of smart fibers and textiles with a highlight on triboelectric nanogenerators, including the general materials and structures of fiber/textile shaped electronics, various fiber and textile devices for triboelectric/triboelectric-integrated energy harvesting and self-powered smart sensing systems. Moreover, the advance of f/t-TENGs with multifunctionality and large-scale textile processing techniques is summarized as well. Finally, the challenges and perspectives of f/t-TENGs for future improvement, large-scale production and emerging applications are thoroughly discussed as well.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schwab K. The fourth industrial revolution. Foreign Affairs. 2015https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution.

  2. Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z, Lee C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InfoMat. 2020;2:1131.

    Article  Google Scholar 

  3. Jin X, Liu C, Xu T, Su L, Zhang X. Artificial intelligence biosensors: Challenges and prospects. Biosens Bioelectron. 2020;165:112412.

    Article  CAS  Google Scholar 

  4. Lee S, Shi Q, Lee C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019;7:031302.

    Article  Google Scholar 

  5. Wu C, Wang AC, Ding W, Guo H, Wang ZL. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater. 2019;9:1802906.

    Article  Google Scholar 

  6. McAfee A, Brynjolfsson E, Davenport TH, Patil D, Barton D. Big data: the management revolution. Harvard Bus Rev. 2012;90:60.

    Google Scholar 

  7. Xia F, Yang LT, Wang L, Vinel A. Internet of things. Int J Commun Syst. 2012;25:1101.

    Article  Google Scholar 

  8. Evans D. The internet of things: How the next evolution of the internet is changing everything. CISCO White Paper. 2011;1:1.

    Google Scholar 

  9. Wang ZL. Entropy theory of distributed energy for internet of things. Nano Energy. 2019;58:669.

    Article  CAS  Google Scholar 

  10. Liu X, Ansari N. Toward green IoT: energy solutions and key challenges. IEEE Commun Mag. 2019;57:104.

    Article  Google Scholar 

  11. Jin L, Xiao X, Deng W, Nashalian A, He D, Raveendran V, Yan C, Su H, Chu X, Yang T, Li W, Yang W, Chen J. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020;20:6404–11.

    Article  CAS  Google Scholar 

  12. Yan C, Gao Y, Zhao S, Zhang S, Zhou Y, Deng W, Li Z, Jiang G, Jin L, Tian G, Yang T, Chu X, Xiong D, Wang Z, Li Y, Yang W, Chen J. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy. 2020;67:104235.

    Article  CAS  Google Scholar 

  13. Zhang N, Huang F, Zhao S, Lv X, Zhou Y, Xiang S, Xu S, Li Y, Chen G, Tao C, Nie Y, Chen J, Fan X. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter. 2020;2:1260.

    Article  Google Scholar 

  14. Yu A, Zhu Y, Wang W, Zhai J. Progress in triboelectric materials: toward high performance and widespread applications. Adv Funct Mater. 2019;29:1900098.

    Article  CAS  Google Scholar 

  15. Zhou Z, Weng L, Tat T, Libanori A, Lin Z, Ge L, Yang J, Chen J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano. 2020;14:14126.

    Article  Google Scholar 

  16. Zou Y, Libanori A, Xu J, Nashalian A, Chen J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research (Wash D C). 2020;2020:7158953.

    CAS  Google Scholar 

  17. Zou Y, Raveendran V, Chen J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy. 2020;77:105303.

    Article  CAS  Google Scholar 

  18. Kraytsberg A, Ein-Eli Y. Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources. 2011;196:886.

    Article  CAS  Google Scholar 

  19. Chen L, Xu Z, Liu M, Huang Y, Fan R, Su Y, Hu G, Peng X, Peng X. Lead exposure assessment from study near a lead-acid battery factory in China. Sci Total Environ. 2012;429:191.

    Article  CAS  Google Scholar 

  20. Kang DHP, Chen M, Ogunseitan OA. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol. 2013;47:5495.

    Article  CAS  Google Scholar 

  21. Fan F-R, Tian Z-Q, Lin WZ. Flexible triboelectric generator. Nano Energy. 2012;1:328.

    Article  CAS  Google Scholar 

  22. Zhao Z, Pu X, Du C, Li L, Jiang C, Hu W, Wang ZL. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano. 2016;10:1780.

    Article  CAS  Google Scholar 

  23. Chen J, Yang J, Li Z, Fan X, Zi Y, Jing Q, Guo H, Wen Z, Pradel KC, Niu S, Wang ZL. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano. 2015;9:3324.

    Article  CAS  Google Scholar 

  24. Chen J, Wang ZL. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule. 2017;1:480.

    Article  CAS  Google Scholar 

  25. Liu Y, Sun N, Liu J, Wen Z, Sun X, Lee S-T, Sun B. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano. 2018;12:2893.

    Article  CAS  Google Scholar 

  26. Hinchet R, Yoon H-J, Ryu H, Kim M-K, Choi E-K, Kim D-S, Kim S-W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science. 2019;365:491.

    Article  CAS  Google Scholar 

  27. Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv. 2017;3:e1700015.

    Article  Google Scholar 

  28. Ballou JW. Static electricity in textiles. Text Res J. 1954;24:146.

    Article  Google Scholar 

  29. Jung W-S, Kang M-G, Moon HG, Baek S-H, Yoon S-J, Wang Z-L, Kim S-W, Kang C-Y. High output piezo/triboelectric hybrid generator. Sci Rep. 2015;5:9309.

    Article  CAS  Google Scholar 

  30. Zhang K, Wang X, Yang Y, Wang ZL. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano. 2015;9:3521.

    Article  CAS  Google Scholar 

  31. Guo H, Zhao J, Dong Q, Wang L, Ren X, Liu S, Zhang C, Dong G. A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy. 2019;56:391.

    Article  CAS  Google Scholar 

  32. Kim M-K, Kim M-S, Jo S-E, Kim Y-J. Triboelectric–thermoelectric hybrid nanogenerator for harvesting frictional energy. Smart Mater Struct. 2016;25:125007.

    Article  Google Scholar 

  33. Tao X. Study of fiber-based wearable energy systems. Acc Chem Res. 2019;52:307.

    Article  CAS  Google Scholar 

  34. Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater. 2016;28:4373.

    Article  CAS  Google Scholar 

  35. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater. 2020;32:e1901958.

    Article  Google Scholar 

  36. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32:e1901971.

    Article  Google Scholar 

  37. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310.

    Article  CAS  Google Scholar 

  38. Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed Engl. 2019;58:13643.

    Article  CAS  Google Scholar 

  39. Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168.

    Article  CAS  Google Scholar 

  40. Heo JS, Eom J, Kim YH, Park SK. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small. 2018;14:1703034.

    Article  Google Scholar 

  41. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32:e1902549.

    Article  Google Scholar 

  42. Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B, Zhou J. Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater. 2020;32:e1902034.

    Article  Google Scholar 

  43. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  44. Chen M, Han X, Wang X, Wei L. Fiber-based triboelectric nanogenerators. In: Wei L, editor. Advanced fiber sensing technologies. Singapore: Springer; 2020. p. 241–57.

    Chapter  Google Scholar 

  45. Kwak SS, Yoon H-J, Kim S-W. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv Funct Mater. 2019;29:1804533.

    Article  Google Scholar 

  46. Chen G, Li Y, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev (Washington, DC, US). 2020;120:3668.

    Article  CAS  Google Scholar 

  47. Hu Y, Zheng Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy. 2019;56:16.

    Article  CAS  Google Scholar 

  48. Paosangthong W, Torah R, Beeby S. Recent progress on textile-based triboelectric nanogenerators. Nano Energy. 2019;55:401.

    Article  CAS  Google Scholar 

  49. Liu J, Gu L, Cui N, Xu Q, Qin Y, Yang R. Fabric-based triboelectric nanogenerators. Research (Wash D C). 2019;2019:1091632.

    CAS  Google Scholar 

  50. Xiong J, Lee PS. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Sci Technol Adv Mater. 2019;20:837.

    Article  Google Scholar 

  51. Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun. 2020;11:3537.

    Article  CAS  Google Scholar 

  52. Chen C, Chen L, Wu Z, Guo H, Yu W, Du Z, Wang ZL. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater Today. 2020;32:84.

    Article  CAS  Google Scholar 

  53. Xie L, Chen X, Wen Z, Yang Y, Shi J, Chen C, Peng M, Liu Y, Sun X. Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 2019;11:39.

    Article  CAS  Google Scholar 

  54. Li S, Zhou Y, Zi Y, Zhang G, Wang ZL. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy. ACS Nano. 2016;10:2528.

    Article  CAS  Google Scholar 

  55. Lin S, Xu L, Chi Wang A, Wang ZL. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat Commun. 2020;11:399.

    Article  CAS  Google Scholar 

  56. Lin S, Xu L, Tang W, Chen X, Wang ZL. Electron transfer in nano-scale contact electrification: atmosphere effect on the surface states of dielectrics. Nano Energy. 2019;65:103956.

    Article  CAS  Google Scholar 

  57. Lin S, Xu L, Xu C, Chen X, Wang AC, Zhang B, Lin P, Yang Y, Zhao H, Wang ZL. Electron transfer in nanoscale contact electrification: effect of temperature in the metal-dielectric case. Adv Mater. 2019;31:1808197.

    Article  Google Scholar 

  58. Lin S, Xu L, Zhu L, Chen X, Wang ZL. Electron transfer in nanoscale contact electrification: photon excitation effect. Adv Mater. 2019;31:1901418.

    Article  Google Scholar 

  59. Lin S, Zheng M, Luo J, Wang ZL. Effects of surface functional groups on electron transfer at liquid–solid interfacial contact electrification. ACS Nano. 2020;14:10733.

    Article  CAS  Google Scholar 

  60. Wang AC, Zhang B, Xu C, Zou H, Lin Z, Wang ZL. Unraveling temperature-dependent contact electrification between sliding-mode triboelectric pairs. Adv Funct Mater. 2020;30:1909384.

    Article  CAS  Google Scholar 

  61. Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today. 2019;30:34.

    Article  CAS  Google Scholar 

  62. Willatzen M, Lew Yan Voon LC, Wang ZL. Quantum theory of contact electrification for fluids and solids. Adv Funct Mater. 2020;30:1910461.

    Article  CAS  Google Scholar 

  63. Xu C, Wang AC, Zou H, Zhang B, Zhang C, Zi Y, Pan L, Wang P, Feng P, Lin Z, Wang ZL. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv Mater. 2018;30:1803968.

    Article  Google Scholar 

  64. Xu C, Zhang B, Wang AC, Cai W, Zi Y, Feng P, Wang ZL. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification. Adv Funct Mater. 2019;29:1903142.

    Article  Google Scholar 

  65. Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, Wang P, Wang Y-C, Feng P, Li D, Wang ZL. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater. 2018;30:1706790.

    Article  Google Scholar 

  66. Wang ZL. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today. 2017;20:74.

    Article  Google Scholar 

  67. Xu C, Zhang B, Wang AC, Zou H, Liu G, Ding W, Wu C, Ma M, Feng P, Lin Z, Wang ZL. Contact-electrification between two identical materials: curvature effect. ACS Nano. 2019;13:2034.

    CAS  Google Scholar 

  68. Zou H, Guo L, Xue H, Zhang Y, Shen X, Liu X, Wang P, He X, Dai G, Jiang P, Zheng H, Zhang B, Xu C, Wang ZL. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat Commun. 2020;11:2093.

    Article  CAS  Google Scholar 

  69. Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang AC, Xu C, Wang ZL. Quantifying the triboelectric series. Nat Commun. 2019;10:1427.

    Article  Google Scholar 

  70. Cui N, Liu J, Gu L, Bai S, Chen X, Qin Y. Wearable triboelectric generator for powering the portable electronic devices. ACS Appl Mater Interfaces. 2015;7:18225.

    Article  CAS  Google Scholar 

  71. Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun. 2016;7:12744.

    Article  CAS  Google Scholar 

  72. Zhao Z, Yan C, Liu Z, Fu X, Peng LM, Hu Y, Zheng Z. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater. 2016;28:10267.

    Article  CAS  Google Scholar 

  73. Lai Y-C, Deng J, Zhang SL, Niu S, Guo H, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater. 2017;27:1604462.

    Article  Google Scholar 

  74. Yu A, Pu X, Wen R, Liu M, Zhou T, Zhang K, Zhang Y, Zhai J, Hu W, Wang ZL. Core–shell–yarn–based triboelectric nanogenerator textiles as power cloths. ACS Nano. 2017;11:12764.

    Article  CAS  Google Scholar 

  75. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano. 2018;12:5190.

    Article  CAS  Google Scholar 

  76. Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater. 2018;28:1704112.

    Article  Google Scholar 

  77. Qiu Q, Zhu M, Li Z, Qiu K, Liu X, Yu J, Ding B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy. 2019;58:750.

    Article  CAS  Google Scholar 

  78. Wang W, Yu A, Liu X, Liu Y, Zhang Y, Zhu Y, Lei Y, Jia M, Zhai J, Wang ZL. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy. 2020;71:104605.

    Article  CAS  Google Scholar 

  79. Wang Z, Wu T, Wang Z, Zhang T, Chen M, Zhang J, Liu L, Qi M, Zhang Q, Yang J, Liu W, Chen H, Luo Y, Wei L. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun. 2020;11:3842.

    Article  Google Scholar 

  80. Ning C, Tian L, Zhao X, Xiang S, Tang Y, Liang E, Mao Y. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J Mater Chem A. 2018;6:19143.

    Article  CAS  Google Scholar 

  81. Yang Y, Sun N, Wen Z, Cheng P, Zheng H, Shao H, Xia Y, Chen C, Lan H, Xie X, Zhou C, Zhong J, Sun X, Lee ST. Liquid–metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano. 2018;12:2027.

    Article  CAS  Google Scholar 

  82. Xiong J, Cui P, Chen X, Wang J, Parida K, Lin MF, Lee PS. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun. 2018;9:4280.

    Article  Google Scholar 

  83. Chen C, Guo H, Chen L, Wang YC, Pu X, Yu W, Wang F, Du Z, Wang ZL. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano. 2020;14:4585.

    Article  CAS  Google Scholar 

  84. Yang W, Gong W, Hou C, Su Y, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat Commun. 2019;10:5541.

    Article  CAS  Google Scholar 

  85. Guo Y, Zhang X-S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy. 2018;48:152.

    Article  CAS  Google Scholar 

  86. Wu Y, Qu J, Daoud WA, Wang L, Qi T. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J Mater Chem A. 2019;7:13347.

    Article  CAS  Google Scholar 

  87. Wen Z, Yeh M-H, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C, Zhu L, Sun X, Wang ZL. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv. 2016;2:e1600097.

    Article  Google Scholar 

  88. Chen J, Huang Y, Zhang N, Zou H, Liu R, Tao C, Fan X, Wang ZL. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy. 2016;1:1.

    Article  CAS  Google Scholar 

  89. Wang Z, Ruan Z, Ng WS, Li H, Tang Z, Liu Z, Wang Y, Hu H, Zhi C. Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods. 2018;2:1800150.

    Article  Google Scholar 

  90. Pu X, Li L, Song H, Du C, Zhao Z, Jiang C, Cao G, Hu W, Wang ZL. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater. 2015;27:2472.

    Article  CAS  Google Scholar 

  91. Liu M, Cong Z, Pu X, Guo W, Liu T, Li M, Zhang Y, Hu W, Wang ZL. High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv Funct Mater. 2019;29:1806298.

    Article  CAS  Google Scholar 

  92. Cho Y, Pak S, Lee YG, Hwang JS, Giraud P, An GH, Cha S. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics. Adv Funct Mater. 2020;30:1908479.

    Article  CAS  Google Scholar 

  93. Zhou Z, Padgett S, Cai Z, Conta G, Wu Y, He Q, Zhang S, Sun C, Liu J, Fan E, Meng K, Lin Z, Uy C, Yang J, Chen J. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron. 2020;155:112064.

    Article  CAS  Google Scholar 

  94. Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X, Yang J, Chen J. A wireless textile-based sensor system for self-powered personalized health care. Matter. 2020;2:896.

    Article  Google Scholar 

  95. Meng K, Chen J, Li X, Wu Y, Fan W, Zhou Z, He Q, Wang X, Fan X, Zhang Y, Yang J, Wang ZL. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv Funct Mater. 2019;29:1806388.

    Google Scholar 

  96. Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J. Large-scale smart carpet for self-powered fall detection. Adv Mater Technol (Weinheim Ger). 2020;5:1900978.

    Article  CAS  Google Scholar 

  97. He Q, Wu Y, Feng Z, Fan W, Lin Z, Sun C, Zhou Z, Meng K, Wu W, Yang J. An all-textile triboelectric sensor for wearable teleoperated human–machine interaction. J Mater Chem A. 2019;7:26804.

    Article  CAS  Google Scholar 

  98. Dong B, Yang Y, Shi Q, Xu S, Sun Z, Zhu S, Zhang Z, Kwong DL, Zhou G, Ang KW, Lee C. Wearable triboelectric-human-machine interface (THMI) using robust nanophotonic readout. ACS Nano. 2020;14:8915.

    Article  CAS  Google Scholar 

  99. Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv. 2020;6:eaaz8693.

    Article  CAS  Google Scholar 

  100. Gong J, Xu B, Guan X, Chen Y, Li S, Feng J. Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy. 2019;58:365.

    Article  CAS  Google Scholar 

  101. Gong W, Hou C, Zhou J, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat Commun. 2019;10:868.

    Article  Google Scholar 

  102. Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, Sheng F, Zhang Y, Wang J, Wang J, Guo W, Wang ZL. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater. 2020;32:e2003897.

    Article  Google Scholar 

  103. Dong K, Peng X, An J, Wang AC, Luo J, Sun B, Wang J, Wang ZL. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun. 2020;11:2868.

    Article  CAS  Google Scholar 

  104. Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W, Fan E, Lin Z, Tan X, Deng W, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3:571–8.

    Article  Google Scholar 

  105. Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy. 2020;70:104528.

    Article  CAS  Google Scholar 

  106. He T, Shi Q, Wang H, Wen F, Chen T, Ouyang J, Lee C. Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile. Nano Energy. 2019;57:338.

    Article  CAS  Google Scholar 

  107. Cong Z, Guo W, Guo Z, Chen Y, Liu M, Hou T, Pu X, Hu W, Wang ZL. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano. 2020;14:5590.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Project from Minister of Science and Technology, China (2016YFA0202703, 2016YFA0202704) and the National Natural Science Foundation of China (Nos. 51872031, 51472056 and 52073032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Zhai or Zhong Lin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yu, A., Zhai, J. et al. Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing. Adv. Fiber Mater. 3, 394–412 (2021). https://doi.org/10.1007/s42765-021-00077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00077-9

Keywords

Navigation