Skip to main content
Log in

Adsorptive Removal of Manganese Ions from Polluted Aqueous Media by Glauconite Clay-Functionalized Chitosan Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The presence of Mn(II) in water exceeding the permitted concentration limits declared by the World Health Organization (WHO) influences individuals, animals, and the ecosystem negatively. Therefore, there is a necessity for an efficient material to eliminate this potentially toxic element from wastewater. We herein focused on the adsorptive removal of Mn(II) ions from polluted aqueous media using natural Egyptian glauconite clay (G) and its nanocomposites with modified chitosan (CS). We applied modified chitosan with glutaraldehyde (GL), ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The utilized nanocomposites were referred to as GL-CS/G, EDTA-GL-CS/G, SDS-CS/G, and CTAB-CS/G, respectively. The point of zero charge values of the materials were estimated. The adsorption properties of the G clay and its nanocomposites toward the removal of Mn(II) ions from polluted aqueous media as well as the adsorption mechanism were explored using a batch technique. The glauconite (G) and its nanocomposites: GL-CS/G, CTAB-CS/G, EDTA-GL-CS/G, and SDS-CS/G, exhibited maximum adsorption capacity values of 3.60, 24.0, 26.0, 27.0, and 27.9 mg g−1, respectively. The adsorption results fitted well the Langmuir isotherm and pseudo-second-order kinetic models. The estimated thermodynamic parameters: ΔH° (from 1.03 to 5.55 kJ/mol) and ΔG° (from − 14.5 to − 18.8 kJ/mol), indicated that Mn(II) ion adsorption process was endothermic, spontaneous, and physisorption controlled. Furthermore, the obtained adsorption results are encouraging and revealing a great potentiality for using the modified adsorbents as accessible adsorbents for Mn(II) ion removal from polluted aqueous solutions, depending on their reusability, high stability, and good adsorption capacities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.
Fig. 7

Similar content being viewed by others

References

  1. M.M. Sobeih, M.F. El-Shahat, A. Osman, M.A. Zaid, M.Y. Nassar, Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv. 10(43), 25567–25585 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. Ilager, H. Seo, N.P. Shetti, S.S. Kalanur, CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation. J. Environ. Chem. Eng. 8(6), 104580 (2020)

    Article  CAS  Google Scholar 

  3. S.J. Malode, N.P. Shetti, K.R. Reddy, Highly sensitive electrochemical assay for selective detection of aminotriazole based on TiO2/poly(CTAB) modified sensor. Environ. Technol. Innov. 21, 101222 (2021)

    Article  CAS  Google Scholar 

  4. M.Y. Nassar, S. Abdallah, Facile controllable hydrothermal route for a porous CoMn2O4 nanostructure: synthesis, characterization, and textile dye removal from aqueous media. RSC Adv. 6(87), 84050–84067 (2016)

    Article  CAS  Google Scholar 

  5. J. Yang, B. Huang, M. Lin, Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: isotherm, kinetics, and thermodynamics studies. J. Chem. Eng. Data 65(5), 2751–2763 (2020)

    Article  CAS  Google Scholar 

  6. C. Alvarez-Bastida, V. Martínez-Miranda, M. Solache-Ríos, I. Linares-Hernández, A. Teutli-Sequeira, G. Vázquez-Mejía, Drinking water characterization and removal of manganese. Removal of manganese from water. J. Environ. Chema. Eng. 6(2), 2119–2125 (2018)

    Article  CAS  Google Scholar 

  7. M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, Efficient solid amino acid–clinoptilolite nanoparticles adsorbent for Mn(II) removal: a comprehensive study on designing the experiments, thermodynamic and kinetic aspects. Solid State Sci. 101, 106124 (2020)

    Article  CAS  Google Scholar 

  8. Y. Li, Z. Xu, H. Ma, Removal of manganese(II) from acid mine wastewater: a review of the challenges and opportunities with special emphasis on Mn-oxidizing bacteria and microalgae. Water 11(12), 2493 (2019)

    Article  CAS  Google Scholar 

  9. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review. J. Environ. Manage. 232, 803–817 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. N. Basu, D.-H. Nam, E. Kwansaa-Ansah, E.P. Renne, J.O. Nriagu, Multiple metals exposure in a small-scale artisanal gold mining community. Environ. Res. 111(3), 463–467 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5(3), 2782–2799 (2017)

    Article  CAS  Google Scholar 

  12. M.Y. Nassar, I.S. Ahmed, H.S. Hendy, A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Mol. Liq. 271, 844–856 (2018)

    Article  CAS  Google Scholar 

  13. M.Y. Nassar, E.I. Ali, E.S. Zakaria, Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7(13), 8034–8050 (2017)

    Article  CAS  Google Scholar 

  14. U. Wingenfelder, B. Nowack, G. Furrer, R. Schulin, Adsorption of Pb and Cd by amine-modified zeolite. Water Res. 39(14), 3287–3297 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. P. Djomgoue, M. Siewe, E. Djoufac, P. Kenfack, D. Njopwouo, Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Appl. Surf. Sci. 258(19), 7470–7479 (2012)

    Article  CAS  Google Scholar 

  16. Q. Wu, Z. Xue, Z. Qi, F. Wang, Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer 41(6), 2029–2032 (2000)

    Article  CAS  Google Scholar 

  17. E. Koksal, B. Afsin, A. Tabak, B. Caglar, Structural characterization of aniline-bentonite composite by FTIR, DTA/TG, and PXRD analyses and BET measurement. Spectrosc. Lett. 44(2), 77–82 (2011)

    Article  CAS  Google Scholar 

  18. M. Yatsyshyn, I. Saldan, C. Milanese, V. Makogon, A. Zeffiro, V. Bellani et al., Properties of glauconite/polyaniline composite prepared in aqueous solution of citric acid. J. Polym. Environ. 24(3), 196–205 (2016)

    Article  CAS  Google Scholar 

  19. L. Pardo, M. Domínguez-Maqueda, J.A. Cecilia, M. Pozo Rodríguez, J. Osajima, M.Á. Moriñigo et al., Adsorption of salmonella in clay minerals and clay-based materials. Minerals. 10(2), 130 (2020)

    Article  CAS  Google Scholar 

  20. A. Vanamudan, K. Bandwala, P. Pamidimukkala, Adsorption property of Rhodamine 6G onto chitosan-g-(N-vinyl pyrrolidone)/montmorillonite composite. Int. J. Biol. Macromol. 69, 506–513 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J. 231, 512–518 (2013)

    Article  CAS  Google Scholar 

  22. V. Ramos, N. Rodrıguez, M. Rodrıguez, A. Heras, E. Agullo, Modified chitosan carrying phosphonic and alkyl groups. Carbohydr. Polym. 51(4), 425–429 (2003)

    Article  CAS  Google Scholar 

  23. S. Zhang, Y. Dong, Z. Yang, W. Yang, J. Wu, C. Dong, Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem. Eng. J. 304, 325–334 (2016)

    Article  CAS  Google Scholar 

  24. B. Krishna, D. Murty, B.J. Prakash, Thermodynamics of chromium (VI) anionic species sorption onto surfactant-modified montmorillonite clay. J. Colloid Interface Sci. 229(1), 230–236 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Association APH, Association AWW, Federation WPC, Federation WE. Standard methods for the examination of water and wastewater: American Public Health Association (1915)

  26. M.Y. Nassar, M.M. Moustafa, M.M. Taha, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. RSC Adv. 6(48), 42180–42195 (2016)

    Article  CAS  Google Scholar 

  27. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)

    Article  CAS  Google Scholar 

  28. M.Y. Nassar, M. Khatab, Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6(83), 79688–79705 (2016)

    Article  CAS  Google Scholar 

  29. E.H. Smith, W. Lu, T. Vengris, R. Binkiene, Sorption of heavy metals by Lithuanian glauconite. Water Res. 30(12), 2883–2892 (1996)

    Article  CAS  Google Scholar 

  30. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, N.M. Mohamed, M. Khatab, Hydrothermally synthesized Co 3 O 4, α-Fe 2 O 3, and CoFe 2 O 4 nanostructures: efficient nano-adsorbents for the removal of Orange G textile dye from aqueous media. J. Inorg. Organomet. Polym Mater. 27(5), 1526–1537 (2017)

    Article  CAS  Google Scholar 

  31. F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. J. Market. Res. 3(2), 129–141 (2014)

    CAS  Google Scholar 

  32. Ö. Yavuz, Y. Altunkaynak, F. Güzel, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 37(4), 948–952 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40(1), 119–125 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. S. Lagergren, About the theory of so-called adsorption of soluble substances. Kunglia Svenska Vetenskapsakademiens, Handlingar. 24(4), 1–39 (1898)

    Google Scholar 

  35. H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1), 171–177 (2004)

    Article  Google Scholar 

  36. W.J. Weber, J.C. Morris, Proceedings of the International Conference on Water Pollution Symposium (Pergamon Press, Oxford, 1962).

    Google Scholar 

  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  38. H. Freundlich, Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 385–470 (1907)

    Article  Google Scholar 

  39. G.D. Halsey, The role of surface heterogeneity in adsorption, in Advances in Catalysis. ed. by W.G. Frankenburg, E.K. Rideal (Academic Press, London, 1952), pp. 259–269

    Google Scholar 

  40. A.M. Alkherraz, A.K. Ali, K.M. Elsherif, Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies. Chem. Int. 6(1), 11–20 (2020)

    CAS  Google Scholar 

  41. M. Anbia, S. Amirmahmoodi, Removal of Hg (II) and Mn (II) from aqueous solution using nanoporous carbon impregnated with surfactants. Arab. J. Chem. 9, S319–S325 (2016)

    Article  CAS  Google Scholar 

  42. L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng et al., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282–290 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. P. Zhang, I. Lo, D. O’Connor, S. Pehkonen, H. Cheng, D. Hou, High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J. Colloid Interface Sci. 508, 39–48 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235-a41 (1960)

    Article  CAS  Google Scholar 

  45. M.S. Onyango, Y. Kojima, O. Aoyi, E.C. Bernardo, H. Matsuda, Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interface Sci. 279(2), 341–50 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. M.Y. Nassar, I.S. Ahmed, T.Y. Mohamed, M. Khatab, A controlled, template-free, and hydrothermal synthesis route to sphere-like [small alpha]-Fe2O3 nanostructures for textile dye removal. RSC Adv. 6(24), 20001–13 (2016)

    Article  CAS  Google Scholar 

  47. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 120, 88–116 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. R. Niwas, U. Gupta, A.A. Khan, K.G. Varshney, The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study. Colloids Surf. A 164(2–3), 115–9 (2000)

    Article  CAS  Google Scholar 

  49. S.K. Milonjić, A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serb. Chem. Soc. 72(12), 1363–7 (2007)

    Article  CAS  Google Scholar 

  50. M. Khobragade, A. Pal, Investigation on the adsorption of Mn (II) on surfactant-modified alumina: batch and column studies. J. Environ. Chem. Eng. 2(4), 2295–305 (2014)

    Article  CAS  Google Scholar 

  51. V. Govindasamy, R. Sahadevan, S. Subramanian, D.K. Mahendradas, Removal of malachite green from aqueous solutions by perlite. Int. J. Chem. React. Eng. 7, 1 (2009)

    Google Scholar 

  52. O.J. Hao, C.M. Tsai, C.P. Huang, The removal of metals and ammonium by natural glauconite. Environ. Int. 13(2), 203–12 (1987)

    Article  CAS  Google Scholar 

  53. M.A. Kamal, S. Bibi, S.W. Bokhari, A.H. Siddique, T. Yasin, Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. React. Funct. Polym. 110, 21–9 (2017)

    Article  CAS  Google Scholar 

  54. N. Chen, Z. Zhang, C. Feng, M. Li, D. Zhu, R. Chen et al., An excellent fluoride sorption behavior of ceramic adsorbent. J. Hazard. Mater. 183(1–3), 460–5 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. R. Bhatt, B. Sreedhar, P. Padmaja, Adsorption of chromium from aqueous solutions using crosslinked chitosan–diethylenetriaminepentaacetic acid. Int. J. Biol. Macromol. 74, 458–66 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. T. Bajda, Z. Kłapyta, Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Appl. Clay Sci. 86, 169–73 (2013)

    Article  CAS  Google Scholar 

  57. Y. Kuang, X. Zhang, S. Zhou, Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12(2), 587 (2020)

    Article  Google Scholar 

  58. A.A. Wef, Standard Methods for the Examination of Water and Wastewater, 21st edn. (American Public Health, Association American Water Works Association, Water Environmental Federation, Washington DC, 2005).

    Google Scholar 

  59. S.R. Taffarel, J. Rubio, On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22(4), 336–43 (2009)

    Article  CAS  Google Scholar 

  60. A. Üçer, A. Uyanik, Ş Aygün, Adsorption of Cu (II), Cd (II), Zn (II), Mn (II) and Fe (III) ions by tannic acid immobilised activated carbon. Sep. Purif. Technol. 47(3), 113–8 (2006)

    Article  CAS  Google Scholar 

  61. A. Jusoh, W. Cheng, W. Low, A. Noraaini, M.M.M. Noor, Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination 182, 347–53 (2005)

    Article  CAS  Google Scholar 

  62. F. Adekola, D. Hodonou, H. Adegoke, Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Appl Water Sci 6(4), 319–30 (2016)

    Article  CAS  Google Scholar 

  63. N. Rajic, D. Stojakovic, S. Jevtic, N.Z. Logar, J. Kovac, V. Kaucic, Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. J. Hazard. Mater. 172(2–3), 1450–7 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. A. Shehap, A. Bakr, O.T. Hussein, Characterization of clay/chitosan nanocomposites and their use for adsorption on Mn (ΙΙ) from aqueous solution. Int. J. Sci. Eng. Appl. 2015, 4 (2015)

    Google Scholar 

  65. N.A. Reiad, O.E.A. Salam, E.F. Abadir, F.A. Harraz, Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane. J. Environ. Sci. 24(8), 1425–32 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Y. Nassar or M. F. El-Shahat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, M.Y., El-Shahat, M.F., Osman, A. et al. Adsorptive Removal of Manganese Ions from Polluted Aqueous Media by Glauconite Clay-Functionalized Chitosan Nanocomposites. J Inorg Organomet Polym 31, 4050–4064 (2021). https://doi.org/10.1007/s10904-021-02028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02028-8

Keywords

Navigation