Skip to main content
Log in

Bifurcation to Instability Through the Lens of the Maslov Index

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The Maslov index is a powerful tool for assessing the stability of solitary waves. Although it is difficult to calculate in general, a framework for doing so was recently established for singularly perturbed systems (Cornwell and Jones in SIAM J Appl Dyn Syst 17(1):754–787, 2018). In this paper, we apply this framework to standing wave solutions of a three-component activator-inhibitor model. These standing waves are known to become unstable as parameters vary. Our goal is to see how this established stability criterion manifests itself in the Maslov index calculation. In so doing, we obtain new insight into the mechanism for instability. We further suggest how this mechanism might be used to reveal new instabilities in singularly perturbed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The reader must decide whether tracking the unstable manifold should be done with [25] or without [5] the use of differential forms.

  2. For a proof that \(E^{s/u}(\lambda ,\xi )\) are Lagrangian subspaces for fixed \(\lambda \ge 0\) and \(\xi \in {\mathbb {R}}\), see [13, Theorem 2.3].

  3. This is true specifically for the second corner, which is the transition from the first slow segment to the fast back. Although multiple heteroclinic connections exist at the other two corners as well, neither path taken would result in a conjugate point.

References

  1. Alexander, J., Gardner, R.A., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410(167–212), 143 (1990)

    MathSciNet  Google Scholar 

  2. Arnol’d, V.I.: Characteristic class entering in quantization conditions. Funct. Anal. Appl. 1(1), 1–13 (1967)

    Article  Google Scholar 

  3. Beck, M., Cox, G., Jones, C., Latushkin, Y., McQuighan, K., Sukhtayev, A.: Instability of pulses in gradient reaction-diffusion systems: A symplectic approach. Philos. Trans. R. Soc. A 376(2117), 20170187 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bose, A., Jones, C.K.R.T.: Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers. Indiana Univ. Math. J. 44(1), 189–220 (1995)

    Article  MathSciNet  Google Scholar 

  5. Brunovskỳ, P.: Tracking invariant manifolds without differential forms. Acta Math. Univ. Comen. 65(1), 23–32 (1996)

    MathSciNet  Google Scholar 

  6. Brunovskỳ, P.: \({C}^r\)-inclination theorems for singularly perturbed equations. J. Differ. Equ. 155(1), 133–152 (1999)

    Article  ADS  Google Scholar 

  7. Carter, P., Rademacher, J.D., Sandstede, B.: Pulse replication and accumulation of eigenvalues. arXiv preprint arXiv:2005.11683 (2020)

  8. Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves, part 1: Hamiltonian systems on a four-dimensional phase space. Phys. D Nonlinear Phenom. 238(18), 1841–1867 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Chardard, F., Dias, F., Bridges, T.J.: On the Maslov index of multi-pulse homoclinic orbits. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2109), 2897–2910 (2009)

    ADS  MathSciNet  Google Scholar 

  10. Chen, C.-N., Choi, Y.S.: Standing pulse solutions to FitzHugh–Nagumo equations. Arch. Ration. Mech. Anal. 206(3), 741–777 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chen, C.-N., Hu, X.: Maslov index for homoclinic orbits of Hamiltonian systems. Ann. I. H. Poincaré-AN. 24(4), 589–603 (2007)

  12. Chen, C.-N., Xijun, H.: Stability analysis for standing pulse solutions to FitzHugh–Nagumo equations. Calc. Var. Partial Differ. Equ. 49(1–2), 827–845 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cornwell, P.: Opening the Maslov box for traveling waves in skew-gradient systems: counting eigenvalues and proving (in) stability. Indiana Univ. Math. J. 68(6), 1801–1832 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cornwell, P., Jones, C.K.R.T.: On the existence and stability of fast traveling waves in a doubly diffusive FitzHugh–Nagumo system. SIAM J. Appl. Dyn. Syst. 17(1), 754–787 (2018)

    Article  MathSciNet  Google Scholar 

  15. Doelman, A., Van Heijster, P., Kaper, T.J.: Pulse dynamics in a three-component system: existence analysis. J. Dyn. Differ. Equ. 21(1), 73–115 (2009)

    Article  MathSciNet  Google Scholar 

  16. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Bifurcations and Periodic Orbits of Vector Fields, pp. 19–73. Springer (1993)

  17. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Springer, Berlin (1981)

    Book  Google Scholar 

  20. Howard, P., Latushkin, Y., Sukhtayev, A.: The Maslov and Morse indices for Schrödinger operators on \({\mathbb{R}}\). Indiana Univ. Math. J. 67(5), 1765–1815 (2018)

    Article  MathSciNet  Google Scholar 

  21. Jones, C.: Geometric singular perturbation theory. In: Dynamical Systems, pp. 44–118 (1995)

  22. Jones, C., Latushkin, Y., Sukhtaiev, S.: Counting spectrum via the Maslov index for one dimensional \(\theta \)-periodic Schrödinger operators. Proc. Am. Math. Soc. 145(1), 363–377 (2017)

    Article  Google Scholar 

  23. Jones, C.K.R.T.: Instability of standing waves for non-linear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8(8), 119–138 (1988)

    Article  Google Scholar 

  24. Jones, C.K.R.T., Latushkin, Y., Marangell, R.: The Morse and Maslov indices for matrix Hill’s equations. In: Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday, vol. 87, pp. 205–233 (2013)

  25. Jones, C.K.R.T., Kopell, N.: Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differ. Equ. 108(1), 64–88 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kuehn, C.: Multiple Time Scale Dynamics, vol. 191. Springer, Berlin (2015)

    Google Scholar 

  27. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton (1963)

    Book  Google Scholar 

  28. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32(4), 827–844 (1993)

    Article  MathSciNet  Google Scholar 

  29. Sandstede, B.: Stability of Travelling Waves. Handbook of Dynamical Systems, vol. 2, pp. 983–1055 (2002)

  30. Schenk, C.P., Or-Guil, M., Bode, M., Purwins, H.-G.: Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains. Phys. Rev. Lett. 78(19), 3781 (1997)

    Article  ADS  CAS  Google Scholar 

  31. van Heijster, P., Chen, C.-N., Nishiura, Y., Teramoto, T.: Localized patterns in a three-component FitzHugh–Nagumo model revisited via an action functional. J. Dyn. Differ. Equ. 30(2), 521–555 (2018)

    Article  MathSciNet  Google Scholar 

  32. van Heijster, P., Doelman, A., Kaper, T.J.: Pulse dynamics in a three-component system: stability and bifurcations. Phys. D Nonlinear Phenom. 237(24), 3335–3368 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yanagida, E.: Mini-maximizers for reaction-diffusion systems with skew-gradient structure. J. Differ. Equ. 179(1), 311–335 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Yanagida, E.: Standing pulse solutions in reaction-diffusion systems with skew-gradient structure. J. Dyn. Differ. Equ. 14(1), 189–205 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C.J. acknowledges support from the US Office of Naval Research under Grant Number N00014-18-1-2204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Cornwell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornwell, P., Jones, C.K.R.T. & Kiers, C. Bifurcation to Instability Through the Lens of the Maslov Index. J Dyn Diff Equat 36 (Suppl 1), 127–148 (2024). https://doi.org/10.1007/s10884-021-10017-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10017-1

Navigation