Skip to main content
Log in

Ultra-fast Two-bit All-Optical Analog to Digital Convertor Based on Surface Plasmons and Kerr-Type Nonlinear Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a novel structure for realization of a 2-bit all-optical analog-to-digital converter (AOADC) is proposed. This structure consists of two plasmonic MIM waveguides and a nanodisk cavity filled with a Kerr-type nonlinear material. Numerical 2D finite-difference time-domain simulations show that the maximum sampling rate of the purposed structure can approximately reach to 5 TS/s. Furthermore, for the proposed structure, the input wavelength and the input power range can be tuned by adjusting the radius of the disk-shaped resonator and the signal wavelength, respectively. Since plasmonic devices have a high potential to be used in integrated optical circuits, the importance of this work become even more significant. Moreover, to the best of the authors’ knowledge, this is the first time that an AOADC base surface plasmonic MIM has been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Farmani A, Mir A, Irannejad M (2019) 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36(4):811–818

    Article  CAS  Google Scholar 

  2. Goudarzi K, Mir A, Chaharmahali I, Goudarzi D (2016) All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal. Opt Laser Technol 78:139–142

    Article  CAS  Google Scholar 

  3. Nurmohammadi T, Abbasian K, As’Adi MJ, Jafari D (2014) Design of an ultrafast all-optical NOR logic gate based on Mach-Zehnder interferometer using quantum-dot SOA. Optik 125(15):4023–9

  4. Moradi M, Danaie M, Orouji AA (2019) Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51(5):1–8

    Article  CAS  Google Scholar 

  5. Jiang Y-C, Liu S-B, Zhang H-F, Kong X-K (2015) Realization of all optical half-adder based on selfcollimated beams by two-dimensional photonic crystals. Opt Commun 348:90–94

    Article  CAS  Google Scholar 

  6. Moradi M, Danaie M, Orouji AA (2018) Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Optik 1(172):127–136

    Article  CAS  Google Scholar 

  7. Naghizade S, Saghaei H (2021) A novel design of fast and compact all-optical full-adder using nonlinear resonant cavities. Opt Quant Electron 53(5):1–4

    Article  Google Scholar 

  8. Djavid M, Ghaffari A, Monifi F, Abrishamian MS (2008) T-shaped channel-drop filters using photonic crystal ring resonators. Phys E 40(10):3151–3154

    Article  Google Scholar 

  9. Djavid M, Abrishamian MS (2012) Multi-channel drop filters using photonic crystal ring resonators. Opt Int J Light Electron Opt 123:167–170

    Article  Google Scholar 

  10. Rostami A, Banaei HA, Nazari F, Bahrami A (2011) An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Opt Int J Light Electron Opt 122:1481–1485

    Article  CAS  Google Scholar 

  11. Jafari D, Nurmohammadi T, Asadi MJ, Abbasian K (2018) All-optical analog-to-digital converter based on Kerr effect in photonic crystal. Opt Laser Technol 1(101):138–143

    Article  CAS  Google Scholar 

  12. Naghizade S, Saghaei H (2021) An ultra-fast optical analog-to-digital converter using nonlinear X-shaped photonic crystal ring resonators. Opt Quant Electron 53(3):1–6

    Google Scholar 

  13. Geravand A, Danaie M, Mohammadi S (2019) All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt Commun 1(430):323–335

    Article  CAS  Google Scholar 

  14. Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E (2005) Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt Lett 30(19):2575–2577

    Article  CAS  PubMed  Google Scholar 

  15. Kuramochi E, Nozaki K, Shinya A, Takeda K, Sato T, Matsuo S, Taniyama H, Sumikura H, Notomi M (2014) Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics 8(6):474–481

    Article  CAS  Google Scholar 

  16. Khani S, Danaie M, Rezaei P (2019) All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 20:1–1

    Google Scholar 

  17. Nejat M, Nozhat N (2020) Analytical methods of equivalent circuit model and transmission matrix for a plasmonic switch with sensing capability in near-infrared region. Plasmonics 15(5):1459–1470

    Article  CAS  Google Scholar 

  18. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 30(453):358–364

    Article  CAS  Google Scholar 

  19. Moshiri SM, Khodadadi M, Nozhat N (2020) Theoretical analysis of ultra-fast multi-wavelength switch containing Kerr nonlinear material and its application as simultaneous AND and NOR logic gates. Appl Opt 59(20):6030–6040

    Article  PubMed  Google Scholar 

  20. Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct 1(112):404–414

    Article  CAS  Google Scholar 

  21. Khani S, Danaie M, Rezaei P (2020) Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics and Nanostructures-Fundamentals and Applications 40:100802

  22. Danaie M, Geravand A, Mohammadi S (2018) Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines. Photonics and Nanostructures-Fundamentals and Applications 28:61–9

  23. Abood I, Elshahat S, Ouyang Z (2021) High buffering capability of silicon-polymer photonic-crystal coupled cavity waveguide. Waves in Random and Complex Media 2:1–6

    Article  Google Scholar 

  24. Elshahat S, Abood I, Liang Z, Pei J, Ouyang Z (2020) Sporadic-slot photonic-crystal waveguide for all-optical buffers with low-dispersion, distortion, and insertion loss. IEEE Access 6(8):77689–77700

    Article  Google Scholar 

  25. Saghaei H, Elyasi P, Karimzadeh R (2019) Design, fabrication, and characterization of Mach–Zehnder interferometers. Photonics and Nanostructures-Fundamentals and Applications 37:100733

  26. Danaie M, Kiani B (2018) Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics and Nanostructures-Fundamentals and Applications 31:89–98

  27. Rahman-Zadeh F, Danaie M, Kaatuzian H (2019) Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electron Rev 27(4):369–377

    Article  Google Scholar 

  28. Sani MH, Saghaei H, Mehranpour MA, Tabrizi AA (2020) A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photonic Sensors 27:1–5

    Google Scholar 

  29. Hajshahvaladi L, Kaatuzian H, Danaie M (2019) Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt Quant Electron 51(12):1–6

    Article  CAS  Google Scholar 

  30. Foroughifar A, Saghaei H, Veisi E (2021) Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt Quant Electron 53(2):1–2

    Article  CAS  Google Scholar 

  31. Danaie M, Attari AR, Mirsalehi MM, Naseh S (2008) Design of a high efficiency wide-band 60° bend for TE polarization. Photonics and Nanostructures-Fundamentals and Applications 6(3–4):188–93

  32. Danaie M, Nasirifar R, Dideban A (2017) Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations. Turk J Electr Eng Comput Sci 25(5):4398–4408

    Article  Google Scholar 

  33. Danaie M, Kaatuzian H (2011) Bandwidth improvement for a photonic crystal optical Y-splitter. Journal of the Optical Society of Korea 15(3):283–288

    Article  CAS  Google Scholar 

  34. Foghani S, Kaatuzian H, Danaie M (2010) Simulation and design of a wideband T-shaped photonic crystal splitter. Opt Appl 40(4):863–872

    CAS  Google Scholar 

  35. Rakhshani MR (2019) Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal–insulator–metal waveguide for glucose sensing. JOSA B 36(10):2834–2842

    Article  CAS  Google Scholar 

  36. Khani S, Danaie M, Rezaei P (2020) Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions. Opt Commun 477:126359

  37. Khani S, Danaie M, Rezaei P (2020) Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct 141:106481

  38. Sadeghi T, Golmohammadi S, Farmani A, Baghban H (2019) Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl Phys B 125(10):1–2

    Article  CAS  Google Scholar 

  39. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct 135:106244

  40. Nickpay MR, Danaie M, Shahzadi A (2019) Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J Res 12:1

    Google Scholar 

  41. Khani S, Makki SV, Mousavi SM, Danaie M, Rezaei P (2017) Adjustable compact dual-band microstrip bandpass filter using T-shaped resonators. Microw Opt Technol Lett 59(12):2970–2975

    Article  Google Scholar 

  42. Nurmohammadi T, Abbasian K, Yadipour R (2018) Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt Quant Electron 50(4):188

    Article  CAS  Google Scholar 

  43. Nurmohammadi T, Yadipour R, Abbasian K (2018) Gold nano-elliptic arrays used in plasmonic waveguides in near infrared spectrum. Opt Appl 48(3)

  44. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102

  45. Dizaj LS, Abbasian K, Nurmohammadi T (2020) A Three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits. Plasmonics 7:1–9

    Google Scholar 

  46. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    Article  CAS  Google Scholar 

  47. Rakhshani MR (2021) Refractive index sensor based on dual side-coupled rectangular resonators and nanorods array for medical applications. Opt Quant Electron 53(5):1–4

    Article  Google Scholar 

  48. Nasirifar R, Danaie M, Dideban A (2019) Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 1(186):194–204

    Article  CAS  Google Scholar 

  49. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6):2169–2176

    Article  CAS  Google Scholar 

  50. Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quant Electron 52(3):1–9

    Article  CAS  Google Scholar 

  51. Nasirifar R, Danaie M, Dideban A (2020) Hollow-core graded index optical fiber refractive index sensor based on surface plasmon resonance. Opt Quant Electron 52(7):1–23

    Article  CAS  Google Scholar 

  52. Khani S, Danaie M, Rezaei P (2021) Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J Comput Electron 20(1):442–457

    Article  CAS  Google Scholar 

  53. Khani S, Danaie M, Rezaei P (2021) Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. Plasmonics 4:1–8

    Google Scholar 

  54. Farmani A, Yavarian M, Alighanbari A, Miri M, Sheikhi MH (2017) Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl Opt 56(32):8931–8940

    Article  CAS  PubMed  Google Scholar 

  55. Nishitani T, Konishi T, Itoh K (2008) Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression. IEEE J Sel Top Quantum Electron 14(3):724–732

    Article  CAS  Google Scholar 

  56. Konishi T, Goto H, Kato T, Kawanishi K (2009) All optical analog-to-digital conversion: principle and recent progress. In 2009 15th Asia-Pacific Conference on Communications (pp. 487–490). IEEE

  57. Pant R, Xiong C, Madden S, Davies BL, Eggleton BJ (2010) Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: a step towards on-chip analog-to-digital conversion. Opt Commun 283(10):2258–2262

    Article  CAS  Google Scholar 

  58. Youssefi B, Moravvej-Farshi MK, Granpayeh N (2012) Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt Commun 285(13–14):3228–3233

    Article  CAS  Google Scholar 

  59. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E (2017) All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt Quant Electron 49(1):38

    Article  Google Scholar 

  60. Park J, Kim KY, Lee IM, Na H, Lee SY, Lee B (2010) Trapping light in plasmonic waveguides. Opt Express 18(2):598–623

    Article  CAS  PubMed  Google Scholar 

  61. Wang G, Lu H, Liu X (2013) Gain-assisted trapping of light in tapered plasmonic waveguide. Opt Lett 38(4):558–560

    Article  PubMed  Google Scholar 

  62. Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. JOSA B 28(7):1616–1621

    Article  CAS  Google Scholar 

  63. Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1):53–62

    Article  CAS  Google Scholar 

  64. Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol Lett 19(2):91–93

    Article  Google Scholar 

  65. Zeng C (2014) Plasmonic spectral splitting in multi-resonator-coupled waveguide systems. Appl Opt 53(1):38–43

    Article  PubMed  Google Scholar 

  66. Lu H, Liu X, Gong Y, Wang L, Mao D (2011) Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt Commun 284(10–11):2613–2616

    Article  CAS  Google Scholar 

  67. Gong Y, Li Z, Fu J, Chen Y, Wang G, Lu H, Wang L, Liu X (2011) Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Opt Express 19(11):10193–10198

    Article  CAS  PubMed  Google Scholar 

  68. Wang G, Lu H, Liu X, Gong Y (2012) Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44):444009

  69. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: Dariush Jafari. Writing—original draft preparation: Dariush Jafari. Writing—review and editing: Dariush Jafari and Mohammad Danaie. Supervision: Mohammad Danaie and Ali Asghar Orouji.

Corresponding author

Correspondence to Dariush Jafari.

Ethics declarations

Ethics Approval

This material is the authors’ own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. The paper reflects the authors’ own research and analysis in a truthful and complete manner. This research does NOT involve human participants or animal.

Consent to Participate

All the authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

Consent for Publication

All the authors have been personally and actively involved in substantial work leading to the paper and consent to publish of the submitted paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, D., Danaie, M. & Orouji, A.A. Ultra-fast Two-bit All-Optical Analog to Digital Convertor Based on Surface Plasmons and Kerr-Type Nonlinear Cavity. Plasmonics 16, 2101–2108 (2021). https://doi.org/10.1007/s11468-021-01474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01474-x

Keywords

Navigation