Skip to main content
Log in

The Localized Enhancement of Surface Plasmon Standing Waves Interacting with Single Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Real-time, high-sensitivity, and label-free detection to single nanoparticles has been achieved via visualizing the interaction between surface plasmon polaritons (SPPs) and nanoparticles, which is widely applied to chemistry and biology. In this work, aiming to enhance the detection sensitivity to nanoparticles, we explore the interaction of SPP standing waves with single nanoparticles. Compared with SPPs, the inhomogeneous fields of SPP standing waves modulate charge distributions around the particle and excite different electric dipole modes that tailor localized enhancements. For nanoparticles situating at electric antinodes of SPP standing waves, a vertical electric dipole is excited and high-density charges are stimulated around nanoparticle-film nanocavities, leading to further increased localized enhancement. The localized enhancement experiences more increase with smaller particle size, lower particle refractive index, lower dielectric constant of surrounding medium, and lower real part of the metal dielectric constant. Via tailoring the localized enhancement by SPP standing waves, the sensitivity of SPP microscopy can be improved, which would broaden its applications on nanotechnology, biomedicine, and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Narimanov E (2019) Resolution limit of label-free far-field microscopy. Advance Photonics 1:056003. https://doi.org/10.1117/1.AP.1.5.056003

    Article  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, US, New York

    Book  Google Scholar 

  3. Zhang X, Xu Q, Xia L, Li Y, Gu J, Tian Z, Ouyang C, Han J, Zhang W (2020) Terahertz surface plasmonic waves: a review. Advance Photonics 2:014001. https://doi.org/10.1117/1.AP.2.1.014001

    Article  CAS  Google Scholar 

  4. Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2010) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35. https://doi.org/10.1007/s11468-009-9111-5

    Article  CAS  Google Scholar 

  5. Wang W (2018) Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev 47:2485–2508. https://doi.org/10.1039/C7CS00451F

    Article  CAS  PubMed  Google Scholar 

  6. Sun X, Liu H, Jiang L, Wei R, Wang X, Wang C, Lu X, Huang C (2019) Detecting a single nanoparticle by imaging the localized enhancement and interference of surface plasmon polaritons. Opt Lett 44:5707–5710. https://doi.org/10.1364/OL.44.005707

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Fang Y, Wang Y, Jiang Y, Liu T, Wang W (2017) Visualizing the bidirectional electron transfer in a Schottky junction consisting of single CdS nanoparticles and a planar gold film. Chem Sci 8:5019–5023. https://doi.org/10.1039/C7SC00990A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Zhou K, Wang Y, Gao J, Yuan T, Pang J, Tang S, Chen H, Wang W (2019) Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles. PNAS 116:12678–12683. https://doi.org/10.1073/pnas.1903259116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu S, Zhou K, Yuan T, Lei W, Chen H, Wang X, Wang W (2020) Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles. J Am Chem Soc 142:15852–15859. https://doi.org/10.1021/jacs.0c05951

    Article  CAS  PubMed  Google Scholar 

  10. Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface Plasmon Resonance Imaging Microscopy of Liposomes and Liposome-Encapsulated Gold Nanoparticles. J Phys Chem C 120:25958–25966. https://doi.org/10.1021/acs.jpcc.6b09503

    Article  CAS  Google Scholar 

  11. Wang S, Shan X, Patel U, Huang X, Lu J, Li J, Tao N (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. PNAS 107:16028–16032. https://doi.org/10.1073/pnas.1005264107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun X, Liu H, Yang Y, Xiong W, Chen Y, Jiang L, Li N, Lu X, Tang H, Xia Y (2017) Imaging to single virus by using surface plasmon polariton scattering. Proc of SPIE 10244:1024425. https://doi.org/10.1117/12.2264434

    Article  Google Scholar 

  13. Grave PL, Domínguez D (2013) SPP tomography experiments with surface plasmon polariton standing waves. Opt Commun 286:151–155. https://doi.org/10.1016/j.optcom.2012.08.061

    Article  CAS  Google Scholar 

  14. Cheng QQ, Li T, Guo RY, Li L, Wang SM, Zhu SN (2012) Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide. Appl Phys Lett 101:171116. https://doi.org/10.1063/1.4764116

    Article  CAS  Google Scholar 

  15. Day JK, Large N, Nordlander P, Halas NJ (2015) Standing wave plasmon modes interact in an antenna-coupled nanowire. Nano Lett 15:1324–1330. https://doi.org/10.1021/nl5045428

    Article  CAS  PubMed  Google Scholar 

  16. Chung E, Kim Y, Tang WT, Sheppard CJR, Peter TCS (2009) Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves. Opt Lett 34:2366–2368. https://doi.org/10.1364/ol.34.002366

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei F, Liu Z (2010) Plasmonic structured illumination microscopy. Nano Lett 10:2531–2536. https://doi.org/10.1021/nl1011068

    Article  CAS  PubMed  Google Scholar 

  18. Meng F, Du L, Yang A, Zhang C, Yuan X (2019) Low-loss metal-dielectric waveguide mode enabled structured illumination microscopy with 0.18 λ0 resolution. Opt Express 27:9250–9257. https://doi.org/10.1364/OE.27.009250

    Article  CAS  PubMed  Google Scholar 

  19. Angela D, Alexei AK (2015) Principles of nanoparticle imaging using surface plasmons. New J Phy 17:013041. https://doi.org/10.1088/1367-2630/17/1/013041

    Article  CAS  Google Scholar 

  20. Søndergaard T, Bozhevolnyi SI (2004) Surface plasmon polariton scattering by a small particle placed near a metal surface, An analytical study. Phys Rev B 69:045422. https://doi.org/10.1103/PhysRevB.69.045422

  21. Evlyukhin AB, Reinhardt C, Evlyukhin E, Chichkov BN (2013) Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface. J Opt Soc Am B 30:2589–2598. https://doi.org/10.1364/josab.30.002589

    Article  CAS  Google Scholar 

  22. Babar S, Weaver JH (2015) Optical constants of Cu, Ag, and Au revisited. Appl Opt 54:477–481. https://doi.org/10.1364/AO.54.000477

    Article  CAS  Google Scholar 

  23. Evlyukhin AB, Bozhevolnyi SI (2015) Resonant unidirectional and elastic scattering of surface plasmon polaritons by high refractive index dielectric nanoparticles. Phys Rev B 92:245419. https://doi.org/10.1103/PhysRevB.92.245419

    Article  CAS  Google Scholar 

  24. Li G, Zhang Q, Maier S, Lei D (2018) Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7:1865–1889. https://doi.org/10.1515/nanoph-2018-0162

    Article  CAS  Google Scholar 

  25. Mie G (1908) Beitrage zur Optik trüber Medien, speziell kolloidaler Metallosungen. Leipzig Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  26. Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnology 10:2–6. https://doi.org/10.1038/nnano.2014.310

    Article  CAS  Google Scholar 

  27. Kaliteevski MA, Lazarenko AA, Il’Inskaya N D, Zadiranov Y M, Sasin M E, Zaitsev D, Mazlin V A, Brunkov P N, Pavlov S I, EgorovA Y, (2015) Experimental demonstration of reduced light absorption by intracavity metallic layers in tamm plasmon-based microcavity. Plasmonics 10(2):281. https://doi.org/10.1007/s11468-014-9806-0

    Article  CAS  Google Scholar 

  28. Morozov KM, Ivanov KA, Pereira D, Menelaou C, Monkman AP, Pozina G, Kaliteevski MA (2019) Revising of the purcell effect in periodic metal-dielectric structures: the role of absorption. Sci Rep 9:9604. https://doi.org/10.1038/s41598-019-46071-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials 4:795–808. https://doi.org/10.1002/lpor.200900055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wei Xiong from Institute of Microelectronics of Chinese Academy of Sciences for his useful discussion.

Funding

This works is partly supported by the National Key Research and Development Program of China grant numbers 2017YFF0107002, 2018YFC2001100, and 2020YFC2004503; Beijing Natural Science Foundation grant numbers 4192063 and 4182073; Scientific Research Equipment Project of Chinese Academy of Sciences under Grant No. YJKYYQ20190056; Guangzhou Science and Technology Project grant number 201604020005; Guangdong Province Science and Technology Project grant number 2016A040403086; and State Key Joint Laboratory of Environment Simulation and Pollution Control grant number 18K07ESPCT.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed in the preparation of manuscript. The article has been read and approved for submission by all the authors.

Corresponding author

Correspondence to Xinchao Lu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, X., Wang, X. et al. The Localized Enhancement of Surface Plasmon Standing Waves Interacting with Single Nanoparticles. Plasmonics 16, 2109–2116 (2021). https://doi.org/10.1007/s11468-021-01470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01470-1

Keywords

Navigation