Skip to main content
Log in

Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This article deals with the study of the following singular quasilinear equation:

$$\begin{aligned} (P) \left\{ \ -\Delta _{p}u -\Delta _{q}u = f(x) u^{-\delta },\; u>0 \text { in }\; \Omega ; \; u=0 \text { on } \partial \Omega , \right. \end{aligned}$$

where \(\Omega \) is a bounded domain in \({\mathbb {R}}^N\) with \(C^2\) boundary \(\partial \Omega \), \(1< q< p<\infty \), \(\delta >0\) and \(f\in L^\infty _{loc}(\Omega )\) is a non-negative function which behaves like \(\text {dist}(x,\partial \Omega )^{-\beta },\) \(\beta \ge 0\) near the boundary of \(\Omega \). We prove the existence of a weak solution in \(W^{1,p}_{loc}(\Omega )\) and its behaviour near the boundary for \(\beta <p\). Consequently, we obtain optimal Sobolev regularity of weak solutions. By establishing the comparison principle, we prove the uniqueness of weak solution for the case \(\beta <2-\frac{1}{p}\). Subsequently, for the case \(\beta \ge p\), we prove the non-existence result. Moreover, we prove Hölder regularity of the gradient of weak solution to a more general class of quasilinear equations involving singular nonlinearity as well as lower order terms (see (1.6)). This result is completely new and of independent interest. In addition to this, we prove Hölder regularity of minimal weak solutions of (P) for the case \(\beta +\delta \ge 1\) that has not been fully answered in former contributions even for p-Laplace operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, G.J.: Multiplicity of positive solutions for a singular and critical elliptic problem in \({\mathbb{R} }^2\). Commun. Contemp. Math. 8, 621–656 (2006)

  2. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), 48 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37, 363–380 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bougherara, B., Giacomoni, J., Hernández, J.: Some regularity results for a singular elliptic problem. Dyn. Syst. Differ. Equ. Appl. Proc. AIMS 2015, 142–150 (2015)

  5. Canino, A., Sciunzi, B., Trombetta, A.: Existence and uniqueness for p-Laplace equations involving singular nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 23, 8 (2016)

    Article  MathSciNet  Google Scholar 

  6. Colombo, M., Mingione, G.: Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270(4), 1416–1478 (2016)

    Article  MathSciNet  Google Scholar 

  7. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  Google Scholar 

  8. De Cicco, V., Giachetti, D., Oliva, F., Petitta, F.: The Dirichlet problem for singular elliptic equations with general nonlinearities. Calc. Var. Partial Differ. Equ. 58(4), 40 (2019)

    Article  MathSciNet  Google Scholar 

  9. Diáz, J.I., Hernández, J., Rakotoson, J.M.: On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms. Milan J. Math. 79, 233–245 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ghergu, M.: Lane-Emden systems with negative exponents. J. Funct. Anal. 258, 3295–3318 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ghergu, M., Rǎdulescu, V.: Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Ser. Math. Appl. 37, Oxford University Press, Oxford, (2008)

  12. Giacomoni, J., Saoudi, K.: \(W^{1, p}_0\) versus \(C^1\) local minimizers for a singular and critical functional. J. Math. Anal. Appl. 363(2), 697–710 (2010)

    Article  MathSciNet  Google Scholar 

  13. Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(1), 117–158 (2007)

  14. Giacomoni, J., Schindler, I., Takáč, P.: Singular quasilinear elliptic systems and Hölder regularity. Adv. Differ. Equ. 20(3–4), 259–298 (2015)

    MATH  Google Scholar 

  15. Giacomoni, J., Sreenadh, K.: Multiplicity results for a singular and quasilinear equation, Discrete Contin. Syst. In: Proceedings of the 6th AIMS International Conference, Suppl., 429–435 (2007)

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New-York (1983)

    Book  Google Scholar 

  17. Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  Google Scholar 

  18. Hernández, J., Mancebo, F., Vega, J.M.: Nonlinear singular elliptic problems: recent results and open problems. Nonlinear elliptic and parabolic problems, 227-242, Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005)

  19. Hernández, J., Mancebo, F., Vega, J.M.: Positive solutions for singular nonlinear elliptic equations. Proc. R. Soc. Edinburgh Sect. A 137, 41–62 (2007)

    Article  MathSciNet  Google Scholar 

  20. Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197–220 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Kumar, D., Rǎdulescu, V., Sreenadh, K.: Singular elliptic problems with unbalanced growth and critical exponent. Nonlinearity 33(7), 3336–3369 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations, Izdat. “Nauka”, Moscow (1964). (In Russian.) English translation: Academic Press, New York (1968). 2nd Russian edition (1973)

  23. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math. Soc. 111, 721–730 (1991)

    Article  MathSciNet  Google Scholar 

  24. Lieberman, G.M.: The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data. Commun. Partial Differ. Equ. 11, 167–229 (1986)

    Article  MathSciNet  Google Scholar 

  25. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  26. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    Article  Google Scholar 

  27. Marano, S., Mosconi, S.: Some recent results on the Dirichlet problem for \((p, q)\)-Laplacian equation. Discrete Contin. Dyn. Syst. Ser. S 11, 279–291 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  MathSciNet  Google Scholar 

  29. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 69(4), 21 (2018). (Art. 108)

  30. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Double-phase problems and a discontinuity property of the spectrum. Proc. Am. Math. Soc. 147(7), 2899–2910 (2019)

    Article  MathSciNet  Google Scholar 

  31. Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Nonlinear nonhomogeneous singular problems. Calc. Var. Partial Differ. Equ. 59(1), 31 (2020)

    Article  MathSciNet  Google Scholar 

  32. Pucci, P., Serrin, J.: The Maximum Principle. Birkhauser, Boston (2007)

    Book  Google Scholar 

  33. Rădulescu, V.D.: Isotropic and anisotropic double phase problems: old and new. Opuscula Math. 39, 259–279 (2019)

    Article  MathSciNet  Google Scholar 

  34. Simon, L.: Interior gradient bounds for non-uniformly elliptic equations. Indiana Univ. Math. J. 25(9), 821–855 (1976)

    Article  MathSciNet  Google Scholar 

  35. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)

    Article  MathSciNet  Google Scholar 

  36. Trudinger, N.S.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  Google Scholar 

  37. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710 (1986), English translation in Math. USSR-Izv. 29(1), 33–66 (1987)

Download references

Acknowledgements

The authors thank the anonymous referee for the careful reading of this manuscript and for his/her remarks and comments, which have improved the initial version of our work. D. Kumar is thankful to Council of Scientific and Industrial Research (CSIR) for the financial support. K. Sreenadh acknowledges the support through the Project: MATRICS grant MTR/2019/000121 funded by SERB, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Giacomoni.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomoni, J., Kumar, D. & Sreenadh, K. Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems. Calc. Var. 60, 121 (2021). https://doi.org/10.1007/s00526-021-01994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01994-8

Mathematics Subject Classification

Navigation