Skip to main content
Log in

On The Existence of Solutions to One-Dimensional Fourth-Order Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

By using variational methods and critical-point theorems, we prove the existence of nontrivial solutions for one-dimensional fourth-order equations. The multiplicity results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Afrouzi, S. Heidarkhani, and D. O’Regan, “Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem,” Taiwan. J. Math., 15, 201–210 (2011).

    MathSciNet  MATH  Google Scholar 

  2. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal., 14, 349–381 (1973).

    Article  MathSciNet  Google Scholar 

  3. A. Averna and G. Bonanno, “Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-Laplacian,” Proc. Edinburgh Math. Soc. (2), 47, 257–270 (2004).

  4. Z. Bai, “Positive solutions of some nonlocal fourth-order boundary value problem,” Appl. Math. Comput., 215, 4191–4197 (2010).

    MathSciNet  MATH  Google Scholar 

  5. G. Bonanno, “A critical point theorem via the Ekeland variational principle,” Nonlin. Anal., 75, 2992–3007 (2012).

    Article  MathSciNet  Google Scholar 

  6. G. Bonanno and B. Di Bella, “A boundary value problem for fourth-order elastic beam equations,” J. Math. Anal. Appl., 343, 1166–1176 (2008).

    Article  MathSciNet  Google Scholar 

  7. G. Bonanno and B. Di Bella, “A fourth-order boundary value problem for a Sturm–Liouville type equation,” Appl. Math. Comput., 217, 3635–3640 (2010).

    MathSciNet  MATH  Google Scholar 

  8. G. Bonanno, B. Di Bella, and D. O’Regan, “Nontrivial solutions for nonlinear fourth-order elastic beam equations,” Comput. Math. Appl., 62, 1862–1869 (2011).

    Article  MathSciNet  Google Scholar 

  9. G. Chai, “Existence of positive solutions for fourth-order boundary value problem with variable parameters,” Nonlin. Anal., 66, 870–880 (2007).

    Article  MathSciNet  Google Scholar 

  10. E. Dulàcska, “Soil settlement effects on buildings,” Dev. Geotech. Eng., Vol. 69, Elsevier, Amsterdam, the Netherlands (1992).

  11. R. Livrea, “Existence of three solutions for a quasilinear two point boundary value problem,” Arch. Math. (Basel), 79, 288–298 (2002).

    Article  MathSciNet  Google Scholar 

  12. P. K. Palamides, “Boundary-value problems for shallow elastic membrane caps,” IMA J. Appl. Math., 67, 281–299 (2002).

    Article  MathSciNet  Google Scholar 

  13. L. A. Peletier,W. C. Troy, and R.C.A.M. Van der Vorst, “Stationary solutions of a fourth-order nonlinear diffusion equation,” Different. Equat., 31, 301–314 (1995).

    MathSciNet  MATH  Google Scholar 

  14. P. Pietramala, “A note on a beam equation with nonlinear boundary conditions,” Bound. Value Probl., 2011, Article ID 376782 (2011), 14 p.

  15. P. Pucci and J. Serrin, “The strong maximum principle revisited,” J. Different. Equat., 196, 1–66 (2004); Erratum: ibid., 207, 226–227 (2004).

  16. P. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” CBMS Reg. Conf., Ser. Math., Vol. 65, Amer. Math. Soc., Providence, RI (1986).

  17. B. Ricceri, “A general variational principle and some of its applications,” J. Comput. Appl. Math., 113, 401–410 (2000).

    Article  MathSciNet  Google Scholar 

  18. V. Shanthi and N. Ramanujam, “A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations,” Appl. Math. Comput., 129, 269–294 (2002).

    MathSciNet  MATH  Google Scholar 

  19. W. Soedel, Vibrations of Shells and Plates, Dekker, New York (1993).

    MATH  Google Scholar 

  20. S. Tersian and J. Chaparova, “Periodic and homoclinic solutions of extended Fisher–Kolmogorov equations,” J. Math. Anal. Appl., 260, 490–506 (2001).

    Article  MathSciNet  Google Scholar 

  21. S. P. Timoshenko, Theory of Elastic Stability,” McGraw-Hill Book Co., Inc., New York–Toronto–London (1961).

  22. Q. L. Yao and Z. B. Bai, “Existence of positive solution for the boundary value problem u4(t) − ⋋h(t)f(u(t)) = 0”, Chinese Ann. Math. Ser. A, 20, 575–578 (1999).

    MathSciNet  MATH  Google Scholar 

  23. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vols. II/B and III, Springer, New York (1985, 1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hadjian.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 11, pp. 1575–1588, November, 2020. Ukrainian DOI: 10.37863/umzh.v72i11.569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokooh, S., Afrouzi, G.A. & Hadjian, A. On The Existence of Solutions to One-Dimensional Fourth-Order Equations. Ukr Math J 72, 1820–1836 (2021). https://doi.org/10.1007/s11253-021-01891-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01891-5

Navigation