Skip to main content

Advertisement

Log in

Are fat and sugar just as detrimental in old age?

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging and poor nutrition are independent risk factors for the development of chronic disease. When young animals are given diets high in fat or sugar, they exhibit hallmarks of aging like mitochondrial dysfunction and inflammation, and also develop a greater risk for age-related disease. The same mitochondrial dysfunction and inflammation that progress with aging may also further predispose older individuals to dietary insults by fat and sugar. The purpose of this work is to review the most recent studies that address the impact of fat and sugar consumption on hallmarks of aging (mitochondrial dysfunction and inflammation). Findings from these studies show that obesogenic, high-fat diets can exacerbate age-related disease and hallmarks of aging in young animals, but high-fat diets that are non-obesogenic may play a beneficial role in old age. In contrast, high-sugar diets do not require an obesogenic effect to induce mitochondrial dysfunction or inflammation in young rodents. Currently, there is a lack of experimental studies addressing the impact of sugar in the context of aging, even though empirical evidence points to the detrimental effect of sugar in aging by contributing to a variety of age-related diseases.

Mitochondrial dysfunction and altered cellular communication (e.g. inflammation) progress with advancing age and increase the risk for age-related disease (ARD). Given the physiological changes that occur with age, the impact of high-fat (HFD) and high-sugar diets (HSD) may differ in later and earlier stages of life. HFD can promote the development of hallmarks of aging in young animals and can also exacerbate the risk for ARD when consumed at an old age. However, non-obesogenic high-fat diets may also reduce the risk for ARD in old age by acting on these hallmarks of aging. On the other hand, HSD promotes mitochondrial dysfunction and inflammation without necessarily inducing weight gain in young animals. Empirical evidence points to sugar as a major contributor to age-related disease and more experimental studies are needed to clarify whether aged individuals are more susceptible to its effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Review does not include any unpublished data. All work presented is available to the public.

Code availability

N/A

References

  1. Micha R, et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang Q, et al. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174(4):516–24.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson RJ, et al. Cerebral fructose metabolism as a potential mechanism driving Alzheimer’s disease. Front Aging Neurosci. 2020;12:560865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harcombe Z, et al. Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: a systematic review and meta-analysis. Open Heart. 2015;2(1):e000196.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ludwig DS, et al. Dietary fat: from foe to friend? Science. 2018;362(6416):764–70.

    Article  CAS  PubMed  Google Scholar 

  6. Astrup A, et al. Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(7):844–57.

    Article  CAS  PubMed  Google Scholar 

  7. Agriculture, U.S.D.o.H.a.H.S.a.U.S.D.o., 2010–2015 Dietary Guidelines for Americans. December 2015.

  8. Martínez Steele E, et al. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev Med. 2019;125:40–8.

    Article  PubMed  Google Scholar 

  9. Morrill SJ, Gibas KJ. Ketogenic diet rescues cognition in ApoE4+ patient with mild Alzheimer’s disease: a case study. Diabetes Metab Syndr. 2019;13(2):1187–91.

    Article  PubMed  Google Scholar 

  10. Taylor MK, et al. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:28–36.

    Article  Google Scholar 

  11. Oike H, Ogawa Y, Azami K. Long-term feeding of a high-fat diet ameliorated age-related phenotypes in SAMP8 mice. Nutrients. 2020;12(5).

  12. Li Z, et al. A high-fat diet reverses metabolic disorders and premature aging by modulating insulin and IGF1 signaling in SIRT6 knockout mice. Aging Cell. 2020;19(3):e13104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Purhonen J, et al. Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation. Sci Rep. 2017;7(1):957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Javed AA, et al. Body mass index and all-cause mortality in older adults: a scoping review of observational studies. Obes Rev. 2020;21(8):e13035.

    Article  PubMed  Google Scholar 

  15. Institute, N.C., Usual Dietary Intakes: Food Intakes, U.S. Population, 2007 – 10. 2019.

  16. Balasubramanian P, Mattison JA, Anderson RM. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res Rev. 2017;39:29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hill CM, Kaeberlein M. Anti-ageing effects of protein restriction unpacked. Nature. 2021;589(7842):357–8.

    Article  CAS  PubMed  Google Scholar 

  18. López-Otín C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tyrrell DJ, et al. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ Res. 2020;126(3):298–314.

    Article  CAS  PubMed  Google Scholar 

  20. Martins IV, et al. Mitochondrial abnormalities and synaptic loss underlie memory deficits seen in mouse models of obesity and Alzheimer’s disease. J Alzheimers Dis. 2017;55(3):915–32.

    Article  CAS  PubMed  Google Scholar 

  21. Chen D, et al. A high-fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J Cell Biochem. 2018;119(11):9602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rial SA, et al. A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(3):158582.

    Article  CAS  PubMed  Google Scholar 

  23. Laurentius T, et al. High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging Long-Evans rats. J Inflamm (Lond). 2019;16:14.

    Article  CAS  Google Scholar 

  24. Speakman JR. Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes (Lond). 2019;43(8):1491–2.

    Article  Google Scholar 

  25. Choi JW, et al. Carnitine induces autophagy and restores high-fat diet-induced mitochondrial dysfunction. Metabolism. 2018;78:43–51.

    Article  CAS  PubMed  Google Scholar 

  26. Emelyanova L, et al. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. PLoS ONE. 2019;14(7):e0217045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loader J, et al. Effects of sugar-sweetened beverage consumption on microvascular and macrovascular function in a healthy population. Arterioscler Thromb Vasc Biol. 2017;37(6):1250–60.

    Article  CAS  PubMed  Google Scholar 

  28. Cigliano L, et al. Short-term fructose feeding induces inflammation and oxidative stress in the hippocampus of young and adult rats. Mol Neurobiol. 2018;55(4):2869–83.

    Article  CAS  PubMed  Google Scholar 

  29. Dos Santos B, et al. Fructose intake impairs cortical antioxidant defenses allied to hyperlocomotion in middle-aged C57BL/6 female mice. Neurochem Res. 2020;45(12):2868–83.

    Article  PubMed  CAS  Google Scholar 

  30. Żebrowska E, et al. High-sugar diet disrupts hypothalamic but not cerebral cortex redox homeostasis. Nutrients. 2020;12(10).

  31. Ruiz-Ramírez A, et al. Kidney dysfunction induced by a sucrose-rich diet in rat involves mitochondria ROS generation, cardiolipin changes, and the decline of autophagy protein markers. Am J Physiol Renal Physiol. 2020;318(1):F53–66.

    Article  PubMed  CAS  Google Scholar 

  32. Cruz Hernández, J.H., et al., High sugar but not high fat diet consumption induces hepatic metabolic disruption and up-regulation of mitochondrial fission-associated protein Drp1 in a model of moderate obesity. Arch Physiol Biochem, 2020: p. 1–8.

  33. Softic S, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30(4):735-753.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pavillard LE, et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget. 2017;8(59):99740–56.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hegab AE, et al. High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects. Stem Cell Res. 2018;33:25–35.

    Article  CAS  PubMed  Google Scholar 

  36. Kim SJ, et al. Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiol. 2019;19(1):193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lam, V., et al., Chronic high fat feeding paradoxically attenuates cerebral capillary dysfunction and neurovascular inflammation in senescence-accelerated-murine-prone strain 8 mice. Nutr Neurosci, 2019: p. 1–9.

  38. Lee G, et al. Three-month daily consumption of sugar-sweetened beverages affects the liver, adipose tissue, and glucose metabolism. J Obes Metab Syndr. 2020;29(1):26–38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yeh SH, et al. A high-sucrose diet aggravates Alzheimer’s disease pathology, attenuates hypothalamic leptin signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiol Aging. 2020;90:60–74.

    Article  CAS  PubMed  Google Scholar 

  40. Velázquez KT, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol. 2019;11(8):619–37.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laurentius T, et al. Long-chain fatty acids and inflammatory markers coaccumulate in the skeletal muscle of sarcopenic old rats. Dis Markers. 2019;2019:9140789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Remus Popa A, et al. Risk factors for adiposity in the urban population and influence on the prevalence of overweight and obesity. Exp Ther Med. 2020;20(1):129–33.

    PubMed  PubMed Central  Google Scholar 

  43. Withaar, C., et al., The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res, 2020.

  44. Shiou YL, et al. High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. J Formos Med Assoc. 2018;117(7):621–31.

    Article  PubMed  Google Scholar 

  45. Landowski M, et al. Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proc Natl Acad Sci U S A. 2019;116(9):3703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ha S, et al. Short-term intake of high fat diet aggravates renal fibrosis in aged Sprague-Dawley rats. Exp Gerontol. 2020;142:111108.

    Article  CAS  PubMed  Google Scholar 

  47. Spencer SJ, et al. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiol Aging. 2017;58:88–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moser VA, et al. Effects of aging, high-fat diet, and testosterone treatment on neural and metabolic outcomes in male brown Norway rats. Neurobiol Aging. 2019;73:145–60.

    Article  CAS  PubMed  Google Scholar 

  49. Hill C, et al., Does dietary-induced obesity in old age impair the contractile performance of isolated mouse soleus, extensor digitorum longus and diaphragm skeletal muscles? Nutrients. 2019;11(3).

  50. Newman JC, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 2017;26(3):547-557.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bush NC, et al. A high-fat compared with a high-carbohydrate breakfast enhances 24-hour fat oxidation in older adults. J Nutr. 2018;148(2):220–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kelley DE, Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest. 1994;94(6):2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Estruch R, et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(5):e6–17.

    Article  PubMed  Google Scholar 

  54. Augustin K, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018;17(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  55. Vinciguerra, F., et al., Influence of the Mediterranean and ketogenic diets on cognitive status and decline: a narrative review. Nutrients. 2020;12(4).

  56. Phillips MCL, et al. Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord. 2018;33(8):1306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ota M, et al. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci Lett. 2019;690:232–6.

    Article  CAS  PubMed  Google Scholar 

  58. Roberts MN, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 2017;26(3):539-546.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu S, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 2021;6(1):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Watanabe M, et al. Scientific evidence underlying contraindications to the ketogenic diet: an update. Obes Rev. 2020;21(10):e13053.

    Article  PubMed  PubMed Central  Google Scholar 

  61. DeChristopher LR, Auerbach BJ, Tucker KL. High fructose corn syrup, excess-free-fructose, and risk of coronary heart disease among African Americans- the Jackson Heart Study. BMC Nutr. 2020;6(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu ZM, et al. Dietary sugar intake was associated with increased body fatness but decreased cardiovascular mortality in Chinese elderly: an 11-year prospective study of Mr and Ms OS of Hong Kong. Int J Obes (Lond). 2018;42(4):808–16.

    Article  CAS  Google Scholar 

  63. Mansoori, S., et al., Added sugar intake is associated with blood pressure in older females. Nutrients. 2019;11(9).

  64. Struijk EA, et al. Sweetened beverages and risk of frailty among older women in the Nurses’ health study: a cohort study. PLoS Med. 2020;17(12):e1003453.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Meng H, et al. Effect of dietary carbohydrate type on serum cardiometabolic risk indicators and adipose tissue inflammatory markers. J Clin Endocrinol Metab. 2018;103(9):3430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao S, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579(7800):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Todoric J, et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab. 2020;2(10):1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Banerjee PS, Lagerlöf O, Hart GW. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med. 2016;51:1–15.

    Article  CAS  PubMed  Google Scholar 

  69. Nowotny K, et al. Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev. 2018;47:55–66.

    Article  CAS  PubMed  Google Scholar 

  70. Russo R, et al. Dietary policies and programs in the United States: a narrative review. Prev Med Rep. 2020;19:101135.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kuster, I. and N. Vila, Healthy lifestyle and eating perceptions: correlations with weight and low-fat and low-sugar food consumption in adolescence. 2017, Taylor & Francis: Frontiers in Life Science. p. 48–62.

  72. Herforth A, et al. A global review of food-based dietary guidelines. Adv Nutr. 2019;10(4):590–605.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jeffrey Leung for his help in the literature review.

Funding

The work was supported by P.S.R. and D.J.M. (P01-AG001751-36), A.P.V. (T32-HL007028-43).

Author information

Authors and Affiliations

Authors

Contributions

A.P.V conceived the original idea and wrote the manuscript with input from all authors. A.P.V, N.N. and D.O. conducted literature search and discussed relevant articles. D.J.M. helped plan and revise the manuscript and D.J.M. and P.S.R. secured funding.

Corresponding author

Correspondence to David J. Marcinek.

Ethics declarations

Ethics approval and consent to participate

A.P.V., D.J.M., N.N., D.H.O. declare that this was all their original work. No experiments were conducted for this project.

Consent for publication

Authors A.P.V., P.S.R., D.J.M., N.N., D.H.O. give consent of publication.

Conflict of interest

Authors A.P.V., P.S.R., D.J.M., N.N., and D.H.O. declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia, A.P., Nagaraj, N., Osman, D.H. et al. Are fat and sugar just as detrimental in old age?. GeroScience 43, 1615–1625 (2021). https://doi.org/10.1007/s11357-021-00390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00390-6

Keywords

Navigation