Skip to main content

Advertisement

Log in

Assessing the sustainable supply chains of tomato paste by fuzzy double frontier network DEA model

  • S.I. : Computational Logistics in Food and Drink Industry
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study develops a double frontier fuzzy network data envelopment analysis (FNDEA) model for assessing the sustainable supply chains. The proposed FNDEA model evaluates the optimistic and pessimistic sustainability of supply chains. The α-cut approach is used to solve the proposed models. The main contribution of this paper is to develop a novel double frontier FNDEA model in the presence of undesirable outputs. To demonstrate the applicability of the proposed approach, the sustainable supply chains of tomato paste are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahi, P., & Searcy, C. (2013). A comparative literature analysis of definitions for green and sustainable supply chain management. Journal of Cleaner Production, 52, s329-341.

    Article  Google Scholar 

  • Azadi, M., Jafarian, M., Farzipoor Saen, R., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & Operations Research, 54, 274–285.

    Article  Google Scholar 

  • Azadi, M., Shabani, A., Khodakarami, M., & Farzipoor Saen, R. (2014). Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers. Transportation Research Part E, 70, 324–338.

    Article  Google Scholar 

  • Badiezadeh, T., Farzipoor Saen, R., & Samavati, T. (2018). Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Computers & Operations Research, 98, 284–290.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2010). Integrating sustainability into supplier selection with grey system and rough set methodologies. International Journal of Production Economics, 124(1), 252–264.

    Article  Google Scholar 

  • Bazaraa, M., Jarvis, J. J., & Sherali, H. D. (1990). Linear programming and network flows (2nd Ed., p. 318). Wiley.

  • Boudaghi, E., & Farzipoor Saen, R. (2018). Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Computers & Operations Research, 89, 348–359.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). "Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Chen, S. M. (1994). Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets and Systems, 66, 31–38.

    Article  Google Scholar 

  • Cook, W. D., Zhu, J., Bi, G., & Yang, F. (2010). Network DEA: Additive efficiency decomposition. European Journal of Operational Research, 207(2), 1122–1129.

  • Cortinhal, M. J., Lopes, M. J., & Melo, M. T. (2015). Dynamic design and re-design of multi-echelon, multi-product logistics networks with outsourcing opportunities: A computational study. Computers & Industrial Engineering, 90, 118–131.

    Article  Google Scholar 

  • Erol, I., Sencer, S., & Sari, R. (2011). A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain. Ecological Economics, 70(6), 1088–1100.

    Article  Google Scholar 

  • Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics Letters, 50(1), 65–70.

    Article  Google Scholar 

  • Fathi, A., & Farzipoor Saen, R. (2018). A novel bidirectional network data envelopment analysis model for evaluating sustainability of distributive supply chains of transport companies. Journal of Cleaner Production, 184, 696–708.

    Article  Google Scholar 

  • Galal, N. M., & Abdul Moneim, A. F. (2016). Developing sustainable supply chains in developing countries. Procedia CIRP, 48, 419–424.

    Article  Google Scholar 

  • Gerami, J., Kiani Mavi, R., Farzipoor Saen, R., & Kiani Mavi, N. (2020). A novel network DEA-R model for evaluating hospital services supply chain performance. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03755-w

    Article  Google Scholar 

  • Halkos, G., & Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62, 97–104.

    Article  Google Scholar 

  • Hatami-Marbini, A. (2019). Benchmarking with network DEA in a fuzzy environment. RAIRO Operations Research, 53(2), 687–703.

    Article  Google Scholar 

  • Kabadurmus, O., & Erdogan, M. S. (2020). Sustainable, multimodal and reliable supply chain design. Annals of Operations Research, 292, 47–70.

    Article  Google Scholar 

  • Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Systems, 113(3), 427–437.

    Article  Google Scholar 

  • Khoveyni, M., Eslami, R., & Yang, G. (2017). Negative data in DEA: Recognizing congestion and specifying the least and the most congested decision making units. Computers & Operations Research, 79, 39–48.

    Article  Google Scholar 

  • Kiani Mavi, R., Fathi, A., Farzipoor Saen, R., & Kiani Mavi, N. (2019). Eco-innovation in transportation industry: A double frontier common weights analysis with ideal point method for Malmquist productivity index. Resources, Conservation & Recycling, 147, 39–48.

    Article  Google Scholar 

  • Kiani Mavi, R., Goh, M., & Kiani Mavi, N. (2016). Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management. Procardia-Social and Behavioral Sciences, 235, 216–225.

    Article  Google Scholar 

  • Kosheleva, O., Kreinovich, V., & Shahbazova, S. (2018). Type-2 fuzzy analysis explains ubiquity of triangular and trapezoid membership functions. In Proceedings of the world conference on soft computing, Baku, Azerbaijan (pp. 29–31).

  • Kucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. Automation in Construction, 40, 33–43.

    Article  Google Scholar 

  • Lim, S., & Zhu, J. (2019). Primal-dual correspondence and frontier projections in two-stage network DEA models. Omega, 83, 236–248.

    Article  Google Scholar 

  • Liu, S., & Chuang, M. (2009). Fuzzy efficiency measures in fuzzy DEA/AR with application to university libraries. Expert Systems with Applications, 36(2), 1105–1113.

    Article  Google Scholar 

  • Mangla, S. K., Govindan, K., & Luthra, S. (2017). Prioritizing the barriers to achieve sustainable consumption and production trends in supply chains using fuzzy analytical hierarchy process. Journal of Cleaner Production, 151, 509–525.

    Article  Google Scholar 

  • Martikainen, A., Niemi, P., & Pekkanen, P. (2014). Developing a service offering for a logistical service provider—Case of local food supply chain. International Journal of Production Economics, 157, 318–326.

    Article  Google Scholar 

  • Mehrabian, S., Jahanshahlo, G. R., Alirezaee, M. R., & Amin, G. R. (2000). An assurance interval for the non-Archimedean epsilon in DEA models. Operations Research, 48(2), 344–347.

    Article  Google Scholar 

  • Podinovski, V. V., & Kuosmanen, T. (2011). Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions. European Journal of Operational Research, 211(3), 577–585.

    Article  Google Scholar 

  • Saati, S., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 1, 255–267.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1), 16–20.

    Article  Google Scholar 

  • Shoja, N., Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Memariani, A., Fallah Jelodar, M., & Gholam Abri, A. (2008). Modified model for finding unique optimal solution in data envelopment analysis. International Mathematical Forum, 3(29), 1445–1450.

    Google Scholar 

  • Singh, S. P., Song, M., Sharma, R. R. K., Fisher, R., Amit, R. K., & Farzipoor Saen, R. (2020). Preface: Sustainable operations in manufacturing enterprise. Annals of Operations Research, 290, 1–4.

    Article  Google Scholar 

  • Soleimani-Damaneh, M. (2008). Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals, 36(2), 217–225.

    Article  Google Scholar 

  • Sueyoshi, T., & Wang, D. (2014). Sustainability development for supply chain management in U.S. petroleum industry by DEA environmental assessment. Energy Economics, 46, 360–374.

    Article  Google Scholar 

  • Tajbakhsh, A., & Hassini, E. (2015). A data envelopment analysis approach to evaluate sustainability in supply chain networks. Journal of Cleaner Production, 105, 74–85.

    Article  Google Scholar 

  • Tavassoli, M., Faramarzi, G. R., & Saen, R. F. (2015). A joint measurement of efficiency and effectiveness using network data envelopment analysis approach in the presence of shared input. Opsearch, 52(3), 490–504.

    Article  Google Scholar 

  • Tavassoli, M., & Farzipoor Saen, R. (2019). Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis. Sustainable Production and Consumption, 18, 41–52.

    Article  Google Scholar 

  • Tavassoli, M., Fathi, A., & Farzipoor Saen, R. (2020). Developing a new super-efficiency DEA model in the presence of both zero data and stochastic data: a case study in the Iranian airline industry. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-01-2020-0044

    Article  Google Scholar 

  • Tavassoli, M., Ketabi, S., & Ghandehari, M. (2020). Developing a network DEA model for sustainability analysis of Iran’s electricity distribution network. Electrical Power and Energy System, 122, 106187.

    Article  Google Scholar 

  • Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197, 243–252.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2013). Integrated low-carbon distribution system for the demand side of a product distribution supply chain: A DoE-guided MOPSO optimiser-based solution approach. International Journal of Production Research, 52(10), 3074–3096.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152, 71–87.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2015). A solution method for A two-layer sustainable supply chain distribution model. Computers & Operations Research, 54, 204–217.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2020). Sustainable distribution system design: A two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model. Annals of Operations Research, 290, 191–222.

    Article  Google Scholar 

  • Wang, Y., & Chin, K. (2009). A new approach for the selection of advanced manufacturing technologies: DEA with double frontiers. International Journal of Production Research, 47(23), 6663–6679.

    Article  Google Scholar 

  • Wang, Y. S., Xie, B. C., Shang, L. F., & Li, W. H. (2013). Measures to improve the performance of China’s thermal power industry in view of cost efficiency. Applied Energy, 112, 1078–1086.

    Article  Google Scholar 

  • World Council of Environment and Development (WCED). (1987). Our common future. Oxford University Press.

  • Yang, F., & Yang, M. (2015). Analysis on China’s eco-innovations: Regulation context, inter temporal change and regional differences. European Journal of Operational Research, 247(3), 1003–1012.

    Article  Google Scholar 

  • Yousefi, S., Soltani, R., Farzipoor Saen, R., & Pishvaee, M. S. (2017). A robust fuzzy possibilistic programming for a new network GP-DEA model to evaluate sustainable supply chains. Journal of Cleaner Production, 166, 537–549.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to appreciate the Guest Editor Professor Arijit Bhattacharya and four anonymous Reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Farzipoor Saen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Theorem 1

\( \theta_{\alpha 2}^{*k} \le \theta_{\alpha 1}^{*k} \) for any α1, \(\alpha_{2} \in \left( {0,1} \right]\) and \(\alpha_{1} \le \alpha_{2}\).\(\theta_{\alpha 2}^{*k}\) and \( \theta_{\alpha 1}^{*k}\) are the optimum objective functions of Model (6) given the α1 and α2, respectively.

Proof

Let

$$ \begin{aligned} & ({\text{v}}_{{1{\text{k }}}}^{*} ,{\text{ v}}_{{2{\text{k }}}}^{*} ,{ } \ldots ,{\text{ v}}_{{\text{ik }}}^{*} ;{{ \upgamma }}_{{1{\text{k}}}}^{*} , {\upgamma }_{{2{\text{k}}}}^{*} ,{ } \ldots ,{{ \upgamma }}_{{{\text{ek}}}}^{*} ;{\text{u}}_{{1{\text{k}}}}^{*} ,{\text{ u}}_{{2{\text{k}}}}^{*} ,{ } \ldots ,{\text{ u}}_{{{\text{ek}}}}^{*} ;{{ \upmu }}_{{1{\text{k}}}}^{*} ,{{ \upmu }}_{{2{\text{k}}}}^{*} ,{ } \ldots ,{{ \upmu }}_{{{\text{bk}}}}^{*} ;{{ \upeta }}_{{1{\text{k}}}}^{*} ,{{ \upeta }}_{{2{\text{k}}}}^{*} ,{ } \ldots ,{{ \upeta }}_{{{\text{sk}}}}^{*} ; \\ & \quad \quad \overline{x}_{11}^{1*} ,{ }\overline{x}_{21}^{1*} ,{ } \ldots ,{ }\overline{x}_{i1}^{1*} ,{ }\overline{x}_{1j, }^{1*} \overline{x}_{2j}^{1*} ,{ } \ldots ,{ }\overline{x}_{ij}^{1*} ;{ }\overline{x}_{11}^{2p*} ,{ }\overline{x}_{21}^{2p*} ,{ } \ldots ,{ }\overline{x}_{e1}^{2p*} ,{ }\overline{x}_{1j, }^{2p*} \overline{x}_{2j}^{2p*} ,{ } \ldots ,{ }\overline{x}_{ej}^{2p*} ; \\ & \quad \quad \overline{y}_{11}^{1p*} ,{ }\overline{y}_{21}^{1p*} ,{ } \ldots ,{ }\overline{y}_{r1}^{1p*} ,{ }\overline{y}_{1j}^{1p*} ,{ }\overline{y}_{2j}^{1p*} ,{ } \ldots ,{ }\overline{{\overline{\overline{y}} }}_{rj}^{1p*} ;\overline{{\overline{\overline{y}} }}_{11}^{2p*} ,{ }\overline{{\overline{\overline{y}} }}_{21}^{2p*} ,{ } \ldots ,{ }\overline{{\overline{\overline{y}} }}_{b1}^{2p*} ,{ }\overline{{\overline{\overline{y}} }}_{1j}^{2p*} ,{ }\overline{{\overline{\overline{y}} }}_{2j}^{2p*} ,{ } \ldots ,{ }\overline{{\overline{\overline{y}} }}_{bj}^{2p*} ; \\ & \quad \quad \overline{z}_{11 }^{p*} ,{ }\overline{z}_{21 }^{p*} ,{ } \ldots ,{ }\overline{z}_{s1 }^{p*} ,{ }\overline{z}_{1j}^{p*} ,{ }\overline{z}_{2j}^{p*} ,{ } \ldots ,{ }\overline{z}_{sj}^{p*} ) \\ \end{aligned} $$

to be the optimal solution of Model-6 given α = α2. Therefore,

$$ \left. {\begin{array}{*{20}l} {\left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ik}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{1{\text{k}}}}^{21} + \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rk}}}}^{{1{\text{p}}}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{{2{\text{p}}}} } \right\}} \right\} = 1} \hfill \\ {\left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ik}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{1{\text{k}}}}^{21} + \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rk}}}}^{{1{\text{p}}}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{{2{\text{p}}}} } \right\}} \right\} = 1} \hfill \\ {\mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rj}}}}^{{1{\text{p}}}} + \mathop \sum \limits_{{{\text{s}} = 1}}^{{\text{S}}} {\overline{\text{z}}}_{{{\text{sj}}}}^{{\text{p}}} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bj}}}}^{{2{\text{p}}}} } \right\} - \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{{\text{R}}_{{1 - {\text{p}}}} }} {\overline{\text{y}}}_{{{\text{r}}_{{1 - {\text{p}}}} {\text{j}}}}^{{1{\text{p}} - 1}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ej}}}}^{{2{\text{p}}}} } \right\} \le 0,} \hfill \\ \end{array} } \right\} $$
(Expression 10)
$$ \left. {\begin{array}{*{20}l} {{\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right) \le \overline{x}_{ij}^{1} \le {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right)} \hfill \\ {{\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right) \le \overline{x}_{ej}^{2p} \le {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right)} \hfill \\ {{\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right) \le \overline{y}_{rj}^{1p} \le {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right)} \hfill \\ {{\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right) \le \overline{{\overline{\overline{y}} }}_{bj}^{2p} \le {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right)} \hfill \\ {{\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right) \le \overline{z}_{sj }^{p} \le {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right)} \hfill \\ \end{array} } \right\} $$
(Expression 11)
$$ \left. {v_{ij} ,\gamma_{ej} , u_{rj} , \mu_{bj} ,{\upeta }_{sj} \ge {\upvarepsilon }} \right\} $$
(Expression 12)

Since \(\left( {{\tilde{\text{x}}}_{{{\text{ij}}}}^{1} } \right)_{{{\upalpha }_{1} }} = \left[ {\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right),\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right)} \right]\forall_{{\text{i}}}\) and \(\left( {{\tilde{\text{x}}}_{{{\text{ij}}}}^{1} } \right)_{{{\upalpha }_{2} }} = \left[ {\left( {{\upalpha }_{2} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right),\left( {{\upalpha }_{2} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right)} \right]{ }\forall_{{\text{i}}}\), so for \(\alpha_{1} \le {\upalpha }_{2}\), we get \(\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right) \le \left( {{\upalpha }_{2} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right)\forall_{{\text{i}}}\) and \(\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right) \le \left( {{\upalpha }_{2} {\text{x}}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right)\forall_{{\text{i}}}\).

Also, we have \(\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right) \le \left( {{\upalpha }_{2} {\text{x}}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right)\forall_{{\text{e}}} \) and \(\left( {{\upalpha }_{1} {\text{x}}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right) \le \left( {{\upalpha }_{2} {\text{x}}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right){ }\forall_{{\text{e}}}\). Similarly, \(\left( {{\upalpha }_{1} {\text{y}}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right) \le \left( {{\upalpha }_{2} {\text{y}}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right)\forall_{{\text{r}}}\) and \(\left( {{\upalpha }_{1} {\text{y}}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right) \le \left( {{\upalpha }_{2} {\text{y}}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right)\forall_{{\text{r}}} . \) In a similar way, \(\left( {{\upalpha }_{1} \overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right) \le \left( {{\upalpha }_{2} \overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right)\forall_{{\text{b }}}\) and \(\left( {{\upalpha }_{1} \overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right) \le \left( {{\upalpha }_{2} \overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right)\forall_{{\text{b}}}\). Finally, \(\left( {{\upalpha }_{1} {\text{z}}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right) \le \left( {{\upalpha }_{2} {\text{z}}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right)\forall_{{\text{s}}} \) and \( \left( {{\upalpha }_{1} {\text{z}}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }_{1} } \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right) \le \left( {{\upalpha }_{2} {\text{z}}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }_{2} } \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right){ }\forall_{{\text{s}}} .\)

Consequently,

$$ \left. {\begin{array}{*{20}l} {{\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right) \le \overline{x}_{ij}^{1} \le {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right)} \hfill \\ {{\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right) \le \overline{x}_{ej}^{2p} \le {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right)} \hfill \\ {{\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right) \le \overline{y}_{rj}^{1p} \le {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right)} \hfill \\ {{\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right) \le \overline{{\overline{\overline{y}} }}_{bj}^{2p} \le {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{y}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right)} \hfill \\ {{\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right) \le \overline{z}_{sj }^{p} \le {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right)} \hfill \\ \end{array} } \right\} $$
(Expression 13)

Given expressions (10), (12), and (13), we find out that

$$ \begin{aligned} & (v_{1k }^{*} , v_{2k }^{*} , \ldots , v_{ik }^{*} ; \gamma_{1k}^{*} , \gamma_{2k}^{*} , \ldots , \gamma_{ek}^{*} ;u_{1k}^{*} , u_{2k}^{*} , \ldots , u_{ek}^{*} ; \mu_{1k}^{*} , \mu_{2k}^{*} , \ldots , \mu_{bk}^{*} ; \eta_{1k}^{*} , \eta_{2k}^{*} , \ldots , \eta_{sk}^{*} ; \\ & \quad \overline{x}_{11}^{1*} , \overline{x}_{21}^{1*} , \ldots , \overline{x}_{i1}^{1*} , \overline{x}_{1j, }^{1*} \overline{x}_{2j}^{1*} , \ldots , \overline{x}_{ij}^{1*} ; \overline{x}_{11}^{2p*} , \overline{x}_{21}^{2p*} , \ldots , \overline{x}_{e1}^{2p*} , \overline{x}_{1j, }^{2p*} \overline{x}_{2j}^{2p*} , \ldots , \overline{x}_{ej}^{2p*} ; \\ & \quad \overline{y}_{11}^{1p*} , \overline{y}_{21}^{1p*} , \ldots , \overline{y}_{r1}^{1p*} , \overline{y}_{1j}^{1p*} , \overline{y}_{2j}^{1p*} , \ldots , \overline{y}_{rj}^{1p*} ;\overline{{\overline{\overline{y}} }}_{11}^{2p*} , \overline{{\overline{\overline{y}} }}_{21}^{2p*} , \ldots , \overline{{\overline{\overline{y}} }}_{b1}^{2p*} , \overline{{\overline{\overline{y}} }}_{1j}^{2p*} , \overline{{\overline{\overline{y}} }}_{2j}^{2p*} , \ldots , \overline{{\overline{\overline{y}} }}_{bj}^{2p*} ; \\ & \quad \overline{z}_{11 }^{p*} ,{ }\overline{z}_{21 }^{p*} ,{ } \ldots ,{ }\overline{z}_{s1 }^{p*} ,{ }\overline{z}_{1j}^{p*} ,{ }\overline{z}_{2j}^{p*} ,{ } \ldots ,{ }\overline{z}_{sj}^{p*} ) \\ \end{aligned} $$

is a feasible solution of Model (6) in α = α1.

Therefore, \(\theta_{\alpha 2}^{k*} \le \theta_{\alpha 1}^{k*}\), where \(\theta_{\alpha 2}^{k*}\) and \(\theta_{\alpha 1}^{k*}\) are the optimum objective function of Model (6) in α1 and α2, respectively. Hence,\( \theta_{\alpha 2}^{k*} \le \theta_{\alpha 1}^{k*}\) for any α1, \(\alpha_{2} \in \left( {0,1} \right]\), and \(\alpha_{1} \le \alpha_{2}\).

Appendix B

To find the unique optimal solution, Shoja et al. (2008) modified CCR model. They proved that if the primal/dual of a DEA model is non-degenerate, then the dual/primal has unique optimal solution. To guarantee the unique optimality of the proposed models, we modify models (6) and (7) based on the approach of Shoja et al. (2008), which is as follows:

Model-9

$$ {\text{Max}}\quad \tilde{\theta }_{Optimistic} = \left\{ {\mathop \sum \limits_{{{\text{p}} = 1}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} \overline{y}_{rj}^{1p} + \mathop \sum \limits_{{{\text{s}} = 1}}^{{\text{S}}} \overline{z}_{sj}^{p} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bk}}}}^{{2{\text{p}}}} } \right\}} \right\} $$

Subject to:

$$ \begin{aligned} & \left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ik}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{21} + \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rk}}}}^{{1{\text{p}} - 1}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{{2{\text{p}}}} } \right\}} \right\} = 1 + \in \\ & \quad \quad \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rj}}}}^{11} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bj}}}}^{21} } \right\} - \left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ij}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ej}}}}^{21} } \right\} \le 0 + \in,\quad j = 1, \ldots ,n \\ & \quad \quad \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rj}}}}^{{1{\text{p}}}} + \mathop \sum \limits_{{{\text{s}} = 1}}^{{\text{S}}} {\overline{\text{z}}}_{{{\text{sj}}}}^{{\text{p}}} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bj}}}}^{{2{\text{p}}}} } \right\} - \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{{\text{R}}_{{1 - {\text{p}}}} }} {\overline{\text{y}}}_{{{\text{r}}_{{1 - {\text{p}}}} {\text{j}}}}^{{1{\text{p}} - 1}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ej}}}}^{{2{\text{p}}}} } \right\} \le 0,\quad j = 1, \ldots ,n \\ & \quad \quad {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right) \le \overline{x}_{ij}^{1} \le {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right) \\ & \quad \quad {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right) \le \overline{x}_{ej}^{2p} \le {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right) \\ & \quad \quad {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right) \le \overline{y}_{rj}^{1p} \le {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right) \\ & \quad \quad {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right) \le \overline{{\overline{\overline{y}} }}_{bj}^{2p} \le {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right) \\ & \quad \quad {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right) \le \overline{z}_{sj }^{p} \le {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right) \\ & \quad \quad v_{ij} ,\gamma_{ej} , u_{rj} , \mu_{bj} ,{\upeta }_{sj} \ge {\upvarepsilon } \\ \end{aligned} $$

Model-10

$$ {\text{Min }}\quad \varphi_{pesimmistic} = \left\{ {\mathop \sum \limits_{{{\text{p}} = 1}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} \overline{y}_{rj}^{1p} + \mathop \sum \limits_{{{\text{s}} = 1}}^{{\text{S}}} \overline{z}_{sj}^{p} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bk}}}}^{{2{\text{p}}}} } \right\}} \right\} $$

Subject to:

$$ \begin{aligned} & \left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ik}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{21} + \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rk}}}}^{{1{\text{p}} - 1}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ek}}}}^{{2{\text{p}}}} } \right\}} \right\} = 1 + \in \\ & \quad \quad \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rj}}}}^{11} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bj}}}}^{21} } \right\} - \left\{ {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{I}}} {\overline{\text{x}}}_{{{\text{ij}}}}^{1} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ej}}}}^{21} } \right\} \ge 0 + \in,\quad j = 1, \ldots ,n \\ & \quad \quad \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{\text{R}}} {\overline{\text{y}}}_{{{\text{rj}}}}^{{1{\text{p}}}} + \mathop \sum \limits_{{{\text{s}} = 1}}^{{\text{S}}} {\overline{\text{z}}}_{{{\text{sj}}}}^{{\text{p}}} + \mathop \sum \limits_{{{\text{b}} = 1}}^{{\text{B}}} \overline{{\overline{\overline{y}} }}_{{{\text{bj}}}}^{{2{\text{p}}}} } \right\} - \mathop \sum \limits_{{{\text{p}} = 2}}^{{\text{P}}} \left\{ {\mathop \sum \limits_{{{\text{r}} = 1}}^{{{\text{R}}_{{1 - {\text{p}}}} }} {\overline{\text{y}}}_{{{\text{r}}_{{1 - {\text{p}}}} {\text{j}}}}^{{1{\text{p}} - 1}} + \mathop \sum \limits_{{{\text{e}} = 1}}^{{\text{E}}} {\overline{\text{x}}}_{{{\text{ej}}}}^{{2{\text{p}}}} } \right\} \ge 0 + \in,\quad { }j = 1, \ldots ,n \\ & \quad \quad {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{L}}}} } \right) \le \overline{x}_{ij}^{1} \le {\text{v}}_{{{\text{ik}}}} \left( {{\alpha x}_{{{\text{ij}}}}^{{1{\text{M}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ij}}}}^{{1{\text{U}}}} } \right) \\ & \quad \quad {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pL}}}} } \right) \le \overline{x}_{ej}^{2p} \le {\upgamma }_{{{\text{ek}}}} \left( {{\alpha x}_{{{\text{ej}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{x}}_{{{\text{ej}}}}^{{2{\text{pU}}}} } \right) \\ & \quad \quad {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pL}}}} } \right) \le \overline{y}_{rj}^{1p} \le {\text{u}}_{{{\text{rk}}}} \left( {{\alpha y}_{{{\text{rj}}}}^{{1{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{y}}_{{{\text{rj}}}}^{{1{\text{pU}}}} } \right) \\ & \quad \quad {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pL}}}} } \right) \le \overline{{\overline{\overline{y}} }}_{bj}^{2p} \le {\upmu }_{{{\text{bk}}}} \left( {{\upalpha }\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pM}}}} + \left( {1 - {\upalpha }} \right)\overline{\overline{{\text{y}}}}_{{{\text{bj}}}}^{{2{\text{pU}}}} } \right) \\ & \quad \quad {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pL}}}} } \right) \le \overline{z}_{sj }^{p} \le {\upeta }_{{{\text{sk}}}} \left( {{\alpha z}_{{{\text{sj}}}}^{{{\text{pM}}}} + \left( {1 - {\upalpha }} \right){\text{z}}_{{{\text{sj}}}}^{{{\text{pU}}}} } \right) \\ & \quad \quad v_{ij} ,\gamma_{ej} , u_{rj} , \mu_{bj} ,{\upeta }_{sj} \ge {\upvarepsilon } \\ \end{aligned} $$

Note that by imposing ε, for each 0 < ε < ε*, models (9) and (10) have no multiple optimal solutions. For proof, see Shoja et al. (2008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, M., Fathi, A. & Saen, R.F. Assessing the sustainable supply chains of tomato paste by fuzzy double frontier network DEA model. Ann Oper Res (2021). https://doi.org/10.1007/s10479-021-04139-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-021-04139-4

Keywords

Navigation