Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Copolymerization of ethylene and methyl acrylate by palladium catalysts bearing IzQO ligands containing methoxyethyl ether moieties and salt effects for polymerization

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. (a) Nakamura A, Ito S, Nozaki K. Coordination-insertion copolymerization of fundamental polar monomers. Chem Rev. 2009;109:5215–44. (b) Ito S, Nozaki K. Coordination-insertion copolymerization of polar vinyl monomers by palladium catalysts. Chem Rec. 2010;10:315–25. (c) Nakamura A, Anselment TMJ, Claverie J, Goodall B, Jordan RF, Mecking S, Rieger B, Sen A, Van Leeuwen PWNM, Nozaki K, Ortho-phosphinobenzenesulfonate: A superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc Chem Res. 2013;46:1438–49. (d) Carrow BP, Nozaki K. Transition-metal-catalyzed functional polyolefin synthesis: Effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules. 2014;47:2541–55. (e) Baier MC, Zuideveld MA, Mecking S.  Post-metallocenes in the industrial production of polyolefins. Angew Chem Int Ed Engl. 2014;53:9722–44. (f) Ito S,  Chain-growth polymerization enabling formation/introduction of arylene groups into polymer main chains. Polym J. 2016;48:667–77. (g) Ito S, Palladium-Catalyzed Homo- and Copolymerization of Polar Monomers: Synthesis of Aliphatic and Aromatic Polymers. Bull Chem Soc Jpn. 2018;91:251–61. (h) Tan C, Chen C, Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers.  Angew Chem Int Ed. 2019;58:7192–200. (i) Tran TV, Do LH, Tunable modalities in polyolefin synthesis via coordination insertion catalysis. Eur Polym J. 2021;142:110100.

  2. Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh RI. Palladium catalysed copolymerisation of ethene with alkylacrylates: polar comonomer built into the linear polymer chain. Chem Commun. 2002:744–5.

  3. (a) Wada S, Jordan RF. Olefin Insertion into a Pd-F Bond: Catalyst Reactivation Following β-F Elimination in Ethylene/Vinyl Fluoride Copolymerization. Angew Chem Int Ed. 2017;56:1820–4. (b) Chen M, Chen C. Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal. 2017:1308–12. (c) Yang B, Pang W, Chen M. Redox Control in Olefin Polymerization Catalysis by Phosphine–Sulfonate Palladium and Nickel Complexes. Eur J Inorg Chem. 2017;2017:2510–4. (d) Liang T, Chen C, Side-Arm Control in Phosphine-Sulfonate Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization. Organometallics. 2017;36:2338–44. (e) Wu Z, Hong C, Du H, Pang W, Chen C.  Influence of Ligand Backbone Structure and Connectivity on the Properties of Phosphine-Sulfonate Pd(II)/Ni(II) Catalysts. Polymers. 2017;9:168. (f) Black RE, Jordan RF, Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands. Organometallics. 2017;36:3415–28. (g) Yang B, Xiong S, Chen C, Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization. Polym Chem. 2017;8:6272–6. (h) Zhang D, Chen C. Influence of Polyethylene Glycol Unit on Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization. Angew Chem Int Ed. 2017;56:14672–76. (i) Song S, Pang W, Li W, Chen M, Chen C. Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes. Polym Chem 2017;8:7400–5. (j) Zou C, W. Pang W, Chen C.  Influence of chelate ring size on the properties of phosphine-sulfonate palladium catalysts. Sci China Chem. 2018;61:1175–78. (k) Tan C, Qasim M, Pang W, Chen C.  Ligand–metal secondary interactions in phosphine–sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polym. Chem. 2020;11:411–6.

  4. (a) Nakano R, Nozaki K. Copolymerization of Propylene and Polar Monomers Using Pd/IzQO Catalysts. J Am Chem. Soc. 2015;137:10934–37. (b) Tao W, Nakano R, S.Ito S, Nozaki K. Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts.  Angew Chem Int Ed. 2016;55:2835–39. (c) Tao W, Akita S, Nakano R, Ito S, Hoshimoto Y, Ogoshi S, Nozaki K. Copolymerisation of ethylene with polar monomers by using palladium catalysts bearing an N-heterocyclic carbene–phosphine oxide bidentate ligand. Chem Commun. 2017;53:2630–33. (d) Akita S, Nakano R, Ito S, Nozaki K. Synthesis and Reactivity of Methylpalladium Complexes Bearing a Partially Saturated IzQO Ligand. Organometallics. 2018;37:2286–96. (e) Tao W, Wang X, Ito S, Nozaki K. Palladium complexes bearing an N-heterocyclic carbene–sulfonamide ligand for cooligomerization of ethylene and polar monomers. J Polym Sci. 2019;57:474–7. (f) Park D, Byun S, Ryu JY, Lee J, Lee J, Hong S, Abnormal N-Heterocyclic Carbene–Palladium Complexes for the Copolymerization of Ethylene and Polar Monomers. ACS Catal. 2020;10:5443–53.

  5. (a) Xin BS, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F, Nickel Catalyzed Copolymerization of Ethylene and Alkyl Acrylates. J Am Chem Soc. 2017;139:3611–14. (b) Zhang Y, Mu H, Pan L, Wang X, Li Y.  Robust bulky [P,O] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers. ACS Catal. 2018;8:5963–76. (c) Cai Z, Do LH. Thermally Robust Heterobimetallic Palladium-Alkali Catalysts for Ethylene and Alkyl Acrylate Copolymerization. Organometallics. 2018;37:3874–82. (d) Tran TV, Karas LJ, Wu JI, Do LH, Elucidating Secondary Metal Cation Effects on Nickel Olefin Polymerization Catalysts. ACS Catal. 2020;10:10760–72. (e) Zhang Y, Zhang Y, Chi Y, Jian Z, Influence of initiating groups on phosphino-phenolate nickel catalyzed ethylene (co)polymerization. Dalton Trans. 2020;49:2636–44.

  6. (a) Cai Z, Shen Z, Zhou X, Jordan RF, Enhancement of chain growth and chain transfer rates in ethylene polymerization by (phosphine-sulfonate)PdMe catalysts by binding of B(C6F5)3 to the sulfonate group. ACS Catal. 2012;2:1187–95. (b) Contrella ND, Jordan RF, Lewis acid modification and ethylene oligomerization behavior of palladium catalysts that contain a phosphine-sulfonate-diethyl phosphonate ancillary ligand. Organometallics. 2014;33:7199–208. (c) Johnson AM, Contrella ND, Sampson JR, Zheng M, Jordan RF. Allosteric Effects in Ethylene Polymerization Catalysis. Enhancement of Performance of Phosphine-Phosphinate and Phosphine-Phosphonate Palladium Alkyl Catalysts by Remote Binding of B(C6F5)3. Organometallics. 2017;36:4990–5002.

  7. Z. Cai, D. Xiao, L. H. Do, Fine-Tuning Nickel Phenoxyimine Olefin Polymerization Catalysts: Performance Boosting by Alkali Cations. J. Am. Chem. Soc. 2015;137:15501–10.

  8. P. Wucher, V. Goldbach, S. Mecking, Electronic Influences in Phosphinesulfonato Palladium(II) Polymerization Catalysts. Organometallics 2013;32;4516–22.

Download references

Acknowledgements

The authors are grateful to Prof. Shingo Ito (Nanyang Technological University) and Prof. Ryo Nakano (Nagoya University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Nozaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akita, S., Nozaki, K. Copolymerization of ethylene and methyl acrylate by palladium catalysts bearing IzQO ligands containing methoxyethyl ether moieties and salt effects for polymerization. Polym J 53, 1057–1060 (2021). https://doi.org/10.1038/s41428-021-00500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00500-3

Search

Quick links