Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Simulation study for the pulling translocation of a polymer globule

Abstract

The pulling translocation of a polymer globule through a nanopore is simulated by using the Langevin dynamics method. The head of the polymer is pulled with a constant pulling force or with a constant pulling speed. The scaling relations between the polymer translocation time τ and polymer length N and between τ and the pulling force F/speed v are investigated. For translocation induced by a constant pulling force, we obtain τ ~Fβ with β = 0.88 at large pulling forces and τ ~Nα for long polymer chains. However, the exponent α is dependent on the intrapolymer interaction strength. For the translocation induced by a constant pulling speed, we obtain τ ~v−0.92 at large pulling speeds and α = 1.24 for long polymer chains. The results show that the conformational changes of the polymer chain during translocation and the entropic and enthalpic forces due to the straight conformation at the trans side play important roles in the pulling translocation of polymer globules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stewart M. Ratcheting MRNA out of the nucleus. Mol Cell. 2007;25:327.

    Article  CAS  PubMed  Google Scholar 

  2. Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 2007;8:761.

    Article  PubMed  CAS  Google Scholar 

  3. Carmody SR, Wente SR. MRNA nuclear export at a glance. J Cell Sci. 2009;122:1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, et al. High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 2013;4:2414.

    Article  PubMed  CAS  Google Scholar 

  5. Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43:258.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB. et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11:711

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Speir JA, Matsui T, Lin Z, Liang L, Lynn AY, et al. Structure of a bacterial virus DNA-injection protein complex reveals a decameric assembly with a constricted molecular channel. PLoS ONE. 2016;11:e0149337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Agarraberes FA, Dice JF. Protein translocation across membranes. Biochim Biophys Acta. 2001;1513:1.

    Article  CAS  PubMed  Google Scholar 

  9. Helenius J, Ng DTW, Marolda CL, Walter P, Valvano MA, Aebi M. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature. 2002;415:447.

    Article  CAS  PubMed  Google Scholar 

  10. Schnell DJ, Hebert DN. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell. 2003;112:491.

    Article  CAS  PubMed  Google Scholar 

  11. Craig EA. Hsp70 at the membrane: driving protein translocation. BMC Biol. 2018;16:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gauthier MG, Slater GW. Sequence effects on the forced translocation of heteropolymers through a small channel. J Chem Phys. 2008;128:175103

    Article  PubMed  CAS  Google Scholar 

  13. Kumar R, Chaudhuri A, Kapri R. Sequencing of semiflexible polymers of varying bending rigidity using patterned pores. J Chem Phys. 2018;148:164901

    Article  PubMed  CAS  Google Scholar 

  14. Han S, Mahato RI, Sung YK, Kim SW. Development of biomaterials for gene therapy. Mol Ther. 2000;2:302.

    Article  CAS  PubMed  Google Scholar 

  15. Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—past, present, and future. Prog Polym Sci. 2007;32:799

    Article  CAS  Google Scholar 

  16. Sui M, Liu W, Shen Y. Nuclear drug delivery for cancer chemotherapy. J Control Release. 2011;155:227.

    Article  CAS  PubMed  Google Scholar 

  17. Parelkar SS, Letteri R, Chan-Seng D, Zolochevska O, Ellis J, Figueiredo M, et al. Polymer-peptide delivery platforms: effect of oligopeptide orientation on polymer-based DNA delivery. Biomacromolecules. 2014;15:1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bezrukov SM, Vodyanoy I, Parsegian VA. Counting polymers moving through a single ion channel. Nature. 1994;370:279.

    Article  CAS  PubMed  Google Scholar 

  19. Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. in Proceedings of the National Academy of Sciences of the United States of America, Vol. 93. National Academy of Sciences, 1996. p. 13770–3.

  20. Sung W, Park PJ. Polymer translocation through a pore in a membrane. Phys Rev Lett. 1996;77:783

    Article  CAS  PubMed  Google Scholar 

  21. Muthukumar M. Polymer translocation through a hole. J Chem Phys. 1999;111:10371.

    Article  CAS  Google Scholar 

  22. Meller A, Nivon L, Branton D. Voltage-driven DNA translocations through a nanopore. Phys Rev Lett. 2001;86:3435.

    Article  CAS  PubMed  Google Scholar 

  23. Chuang J, Kantor Y, Kardar M. Anomalous dynamics of translocation. Phys Rev E. 2001;65:011802.

    Article  CAS  Google Scholar 

  24. Slonkina E, Kolomeisky AB. Polymer translocation through a long nanopore. J Chem Phys. 2003;118:7112.

    Article  CAS  Google Scholar 

  25. Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005;5:1193.

    Article  CAS  PubMed  Google Scholar 

  26. Guillouzic S, Slater GW. Polymer translocation in the presence of excluded volume and explicit hydrodynamic interactions. Phys Lett A. 2006;359:261.

    Article  CAS  Google Scholar 

  27. Luo MB. Translocation of polymer chains through interacting nanopores. Polymer. 2007;48:7679.

    Article  CAS  Google Scholar 

  28. He YD, Qian HJ, Lu ZY, Li ZS. Polymer translocation through a nanopore in mesoscopic simulations. Polymer. 2007;48:3601.

    Article  CAS  Google Scholar 

  29. Dekker C. Solid-state nanopores. Nat Nanotechnol 2007;2:209.

    Article  CAS  PubMed  Google Scholar 

  30. Luo K, Ala-Nissila T, Ying SC, Bhattacharya A. Dynamics of DNA translocation through an attractive nanopore. Phys Rev E. 2008;78:061911.

    Article  CAS  Google Scholar 

  31. Wong CTA, Muthukumar M. Polymer translocation through α-hemolysin pore with tunable polymer-pore electrostatic interaction. J Chem Phys. 2010;133:045101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Panja D, Barkema GT. Simulations of two-dimensional unbiased polymer translocation using the bond fluctuation model. J Chem Phys. 2010;132:014902.

    Article  PubMed  CAS  Google Scholar 

  33. Ying Y, Zhang J, Gao R, Long Y. Nanopore‐based sequencing and detection of nucleic acids. Angew Chem Int Ed. 2013;52:2.

    Article  CAS  Google Scholar 

  34. Nagarajan K, Chen SB. Polyelectrolyte translocation through a tortuous nanopore. J Phys Chem B. 2019;123:9031.

    Article  CAS  PubMed  Google Scholar 

  35. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base Identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265.

    Article  CAS  PubMed  Google Scholar 

  36. Postma HWC. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010;10:420.

    Article  CAS  PubMed  Google Scholar 

  37. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, et al. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 2010;107:16060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu Z, Zhang Y, Luan B, Zhou R. DNA translocation through single-layer boron nitride nanopores. Soft Matter. 2016;12:817.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson BN, Muthukumar M, Meller A. PH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano. 2013;7:1408.

    Article  CAS  PubMed  Google Scholar 

  40. Mereuta L, Roy M, Asandei A, Lee JK, Park Y, Andricioaei I, et al. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci. Rep. 2014;4:3885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu Y, Yobas L. Slowing DNA translocation in a nanofluidic field-effect transistor. ACS Nano. 2016;10:3985.

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Yang C, Zhao K, Li J, Wu HC. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat Commun. 2013;4:2989.

    Article  PubMed  CAS  Google Scholar 

  43. Wanunu M, Sutin J, McNally B, Chow A, Meller A. DNA translocation governed by interactions with solid-state nanopores. Biophys J. 2008;95:4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carson S, Wilson J, Aksimentiev A, Wanunu M. Smooth DNA transport through a narrowed pore geometry. Biophys J. 2014;107:2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gopinathan A, Kim YW. Polymer translocation in crowded environments. Phys Rev Lett. 2007;99:228106.

    Article  PubMed  CAS  Google Scholar 

  46. Ying YL, Li DW, Li Y, Lee JS, Long YT. Enhanced translocation of Poly(Dt)45 through an α-hemolysin nanopore by binding with antibody. Chem Commun. 2011;47:5690.

    Article  CAS  Google Scholar 

  47. Polson JM, McCaffrey ACM. Polymer translocation dynamics in the quasi-static limit. J Chem Phys. 2013;138:174902.

    Article  PubMed  CAS  Google Scholar 

  48. Sun LZ, Cao WP, Luo MB. Free energy landscape for the translocation of polymer through an interacting pore. J Chem Phys. 2009;131:194904.

    Article  PubMed  CAS  Google Scholar 

  49. Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM. Single protein misfolding events captured by atomic force microscopy. Nat Struct Biol. 1999;6:1025.

    Article  CAS  PubMed  Google Scholar 

  50. Cieplak M, Filipek S, Janovjak H, Krzyśko KA. Pulling single bacteriorhodopsin out of a membrane: comparison of simulation and experiment. Biochim Biophys Acta. 2006;1758:537.

    Article  CAS  PubMed  Google Scholar 

  51. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RMM, Lemay SG, et al. Direct force measurements on DNA in a solid-state nanopore. Nat Phys. 2006;2:473.

    Article  CAS  Google Scholar 

  52. Bulushev RD, Marion S, Petrova E, Davis SJ, Maerkl SJ, Radenovic A. Single molecule localization and discrimination of DNA-protein complexes by controlled translocation through nanocapillaries. Nano Lett. 2016;16:7882.

    Article  CAS  PubMed  Google Scholar 

  53. Menais T. Polymer translocation under a pulling force: scaling arguments and threshold forces. Phys Rev E. 2018;97:022501.

    Article  CAS  PubMed  Google Scholar 

  54. Ritort F. Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter. 2006;18:R531.

    Article  CAS  PubMed  Google Scholar 

  55. Sischka A, Spiering A, Khaksar M, Laxa M, König J, Dietz K-J, et al. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers. J Phys Condens Matter. 2010;22:454121.

    Article  PubMed  CAS  Google Scholar 

  56. Bulushev RD, Marion S, Radenovic A. Relevance of the drag force during controlled translocation of a DNA-Protein complex through a glass nanocapillary. Nano Lett. 2015;15:7118.

    Article  CAS  PubMed  Google Scholar 

  57. Carbone P, Avendaño C. Coarse-grained methods for polymeric materials: enthalpy- and entropy-driven models. Wiley Interdiscip Rev Comput Mol Sci. 2014;4:62.

    Article  CAS  Google Scholar 

  58. Lima NW, Gutierres LI, Gonzalez RI, Müller S, Thomaz RS, Bringa EM, et al. Molecular dynamics simulation of polymerlike thin films irradiated by fast ions: a comparison between FENE and Lennard-Jones potentials. Phys Rev B. 2016;94:195417.

    Article  Google Scholar 

  59. Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys. 1971;54:5237.

    Article  CAS  Google Scholar 

  60. Ermann N, Hanikel N, Wang V, Chen K, Weckman NE, Keyser UF. Promoting single-file DNA translocations through nanopores using electro-osmotic flow. J Chem Phys. 2018;149:163311.

    Article  PubMed  CAS  Google Scholar 

  61. Luo K, Ala-Nissila T, Ying SC, Metzler R. Driven polymer translocation through nanopores: slow-vs.-fast dynamics. EPL. 2009;88:68006.

    Article  CAS  Google Scholar 

  62. Wu F, Fu Y, Yang X, Sun LZ, Luo MB. Driven translocation of semiflexible polyelectrolyte through a nanopore. J Polym Sci Part B Polym Phys. 2019;57:912.

    Article  CAS  Google Scholar 

  63. Milchev A. Single-polymer dynamics under constraints: scaling theory and computer experiment. J Phys Condens Matter. 2011;23:103101.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang Y, Zhou H, Ou-Yang Z-C. Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions. Biophys J. 2001;81:1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen H, Yuan G, Winardhi RS, Yao M, Popa I, Fernandez JM, et al. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J Am Chem Soc. 2015;137:3540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vocks H, Panja D, Barkema GT, Ball RC. Pore-blockade times for field-driven polymer translocation. J Phys Condens Matter. 2008;20:095224.

    Article  CAS  Google Scholar 

  67. Palyulin VV, Ala-Nissila T, Metzler R. Polymer translocation: the first two decades and the recent diversification. Soft Matter. 2014;10:9016.

    Article  CAS  PubMed  Google Scholar 

  68. Luo MB, Tsehay DA, Sun LZ. Temperature dependence of the translocation time of polymer through repulsive nanopores. J Chem Phys. 2017;147:034901.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant No. 11974305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Bo Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, J., Zhuo, BY. et al. Simulation study for the pulling translocation of a polymer globule. Polym J 53, 1047–1056 (2021). https://doi.org/10.1038/s41428-021-00502-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00502-1

This article is cited by

Search

Quick links