Skip to main content
Log in

Two-Dimensional Pseudosteady Flows Around a Sharp Corner

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider two-dimensional (2D) pseudosteady flows around a sharp corner. This problem can be seen as a 2D Riemann initial and boundary value problem (IBVP) for the compressible Euler system. The initial state is a combination of a uniform flow in one quadrant and vacuum in the remaining domain. The boundary condition on the wall of the sharp corner is a slip boundary condition. By a self-similar transformation, the 2D Riemann IBVP is converted into a boundary value problem (BVP) for the 2D self-similar Euler system. Existence of global piecewise smooth (or Lipshitz-continuous) solutions to the BVP are obtained. One of the main difficulties for the global existence is that the type of the 2D self-similar Euler system is a priori unknown. In order to use the method of characteristic analysis, we establish some a priori estimates for the hyperboliciy of the system. The other main difficulty is that when the uniform flow is sonic or subsonic, the hyperbolic system becomes degenerate at the origin. Moreover, there is a multi-valued singularity at the origin. To solve this degenerate hyperbolic boundary value problem, we establish some uniform interior \(C^{0, 1}\) norm estimates for the solutions of a sequence of regularized hyperbolic boundary value problems, and then use the Arzela–Ascoli theorem and a standard diagonal procedure to construct a global Lipschitz continuous solution. The method used here may also be used to construct continuous solutions of some other degenerate hyperbolic boundary value problems and sonic-supersonic flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bae, M., Chen, G.Q., Feldman, M.: Regularity of solutions to regular shock reflection for potential flow. Invent. Math. 175, 505–543, 2009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Canic, S., Keyfitz, B.L.: Quasi-one-dimensional Riemann problems and their role in self-similar two-dimensional problems. Arch. Ration. Mech. Anal. 144, 233–258, 1998

    Article  MathSciNet  MATH  Google Scholar 

  3. Canic, S., Keyfitz, B.L., Kim, E.H.: A free boundary problem for a quasilinear degenerate elliptic equation: regular reflection of weak shock. Commun. Pure Appl. Math. 55, 71–92, 2002

    Article  MATH  Google Scholar 

  4. Canic, S., Keyfitz, B.L., Kim, E.H.: Free boundary problems for nonlinear wave systems: Mach Stems for interacting shocks. SIAM J. Math. Anal. 37, 1947–1977, 2006

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, T., Chen, G.Q., Yang, S.L.: On the 2-D Riemann problem for the compressible Euler equations, I interaction of shock waves and rarefaction waves. Discret. Contin. Dyn. Syst. 1, 555–584, 1995

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, T., Chen, G.Q., Yang, S.L.: On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discret. Contin. Dyn. Syst. 6, 419–430 (2000)

  7. Chang, T., Hsiao, L.: The Riemann Problem and Interaction of Waves in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 41. Longman, Essex (1989)

  8. Chen, G.Q., Deng, X.M., Xiang, W.: Shock diffraction by convex cornered wedges for the nonlinear wave system. Arch. Ration. Mech. Anal. 211, 61–112, 2014

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.Q., Feldman, M.: Global solutions of shock reflection by large-angle wedges for potential flow. Ann. Math. 171, 1067–1182, 2010

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.Q., Feldman, M.: The Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures. Princeton Math Series in Annals of Mathematical Studies, 197. Princeton University Press, Princeton (2017)

  11. Chen, G.Q., Feldman, M., Xiang, W.: Convexity of self-similar transonic shocks and free boundaries for the Euler equations for potential flow. Arch. Ration. Mech. Anal. 238, 47–124, 2020

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, S.X., Qu, A.F.: Riemann boundary value problems and reflection of shock for the Chaplygin gas. Sci China Math. 55, 671–685, 2012

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S.X., Qu, A.F.: Two dimensiona Riemann problems for Chaplygin gas. SIAM J Math. Anal. 44, 2146–2178, 2012

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Zheng, Y.X.: The interaction of rarefaction waves of the two-dimensional Euler equations. Indiana Univ. Math. J. 59, 231–256, 2010

    Article  MathSciNet  MATH  Google Scholar 

  15. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York 1948

    MATH  Google Scholar 

  16. Dai, Z.H., Zhang, T.: Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics. Arch. Ration. Mech. Anal. 155, 277–298, 2000

    Article  MathSciNet  MATH  Google Scholar 

  17. Elling, V.: Regular reflection in self-similar potential flow and the sonic criterion. Commun. Math. Anal. 8, 22–69, 2010

    MathSciNet  MATH  Google Scholar 

  18. Elling, V., Liu, T.P.: The ellipticity principle for self-similar potential flows. J. Hyper. Differ. Equ. 2, 909–917, 2005

    Article  MathSciNet  MATH  Google Scholar 

  19. Elling, V., Liu, T.P.: Supersonic flow onto a solid wedge. Commun. Pure Appl. Math. 61, 1347–1448, 2008

    Article  MathSciNet  MATH  Google Scholar 

  20. Glimm, J., Ji, X.M., Li, J.Q., Li, X.L., Zhang, P., Zhang, T., Zheng, Y.X.: Transonic shock formation in a rarefaction Riemann problem for the 2D compressible Euler equations. SIAM J. Appl. Math. 69, 720–742, 2008

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai, G.: On the expansion of a wedge of van der Waals gas into a vacuum. J. Differ. Equ. 259, 1181–1202, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lai, G.: On the expansion of a wedge of van der Waals gas into a vacuum II. J. Differ. Equ. 260, 3538–3575, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lai, G.: Interaction of composite waves of the two-dimensional full Euler equations for van der Waals gases. SIAM J. Math. Anal. 50, 3535–3597, 2018

    Article  MathSciNet  MATH  Google Scholar 

  24. Lai, G.: Global solutions to a class of two-dimensional Riemann problems for the isentropic Euler equations with general equations of state. Indian. Univ. Math. J. 68, 1409–1464, 2019

    Article  MATH  Google Scholar 

  25. Li, J.Q.: On the two-dimensional gas expansion for the compressible Euler equations. SIAM J. Appl. Math. 62, 831–852, 2002

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J.Q., Yang, Z.C., Zheng, Y.X.: Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations. J. Differ. Equ. 250, 782–798, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, J.Q., Zhang, T., Yang, S.L.: The Two-Dimensional Riemann Problem in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, 98. Longman (1998)

  28. Li, J.Q., Zhang, T., Zheng, Y.X.: Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations. Commun. Math. Phys. 267, 1–12, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, J.Q., Zheng, Y.X.: Interaction of rarefaction waves of the two-dimensional self-similar Euler equations. Arch. Ration. Mech. Anal. 193, 623–657, 2009

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J.Q., Zheng, Y.X.: Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations. Commun. Math. Phys. 296, 303–321, 2010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Li, M.J., Zheng, Y.X.: Semi-hyperbolic patches of solutions of the two-dimensional Euler equations. Arch. Ration. Mech. Anal. 201, 1069–1096, 2011

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, T.T.: Global Classical Solutions for Quasilinear Hyperbolic System. Wiley, Hoboken 1994

    Google Scholar 

  33. Li, T.T., Yu, W.C.: Boundary Value Problem for Quasilinear Hyperbolic Systems. Duke University (1985)

  34. Li, T. T., Yu, W. C.: The centered waves for quasilinear hyperbolic systems. Fudan J. (Nat. Sci.) 25 (1986) 195–206. (in Chinese)

  35. Li, T.T., Yu, W.C.: The centered wave problem for quasilinear hyperbolic systems. Chin. Ann. Math. 7A, 423–436, 1986. (in Chinese)

    MATH  Google Scholar 

  36. Serre, D.: Shock relfection in gas dynamics. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathermathematical Fluid Dynamics, vol. IV, pp. 39–122. North-Holland, Elsevier 2007

    Chapter  Google Scholar 

  37. Serre, D.: Multi-dimensional shock interaction for a Chaplygin gas. Arch. Ration. Mech. Anal. 191, 539–577, 2008

    Article  MATH  Google Scholar 

  38. Sheng, W.C., Yao, A.D.: Centered simple waves for the two-dimensional pseudo-steady isothermal flow around a convex corner. Appl. Math. Mech. (English Ed.) 40(5), 705–718, 2019

    Article  MathSciNet  MATH  Google Scholar 

  39. Sheng, W. C., Yao, A. D.: Two-dimensional pseudosteady supersonic flow around a sharp corner, submitted

  40. Sheng, W.C., You, S.K.: Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow. J. Math. Pures Appl. 114(9), 29–50, 2018

    Article  MathSciNet  MATH  Google Scholar 

  41. Sheng, W.C., You, S.K.: The two-dimensional unsteady supersonic flow around a convex corner. J. Hyperbolic Differ. Equ. 15, 443–461, 2018

    Article  MathSciNet  MATH  Google Scholar 

  42. Sheng, W.C., Zhang, T.: The Riemann problem for transportation equations in gas dynamics. Mem. Am. Math. Soc. 137(564) (1999)

  43. Smoller, J.: Shock Waves and Reaction Diffusion Equations, 2nd edn. Springer, New York 1994

    Book  MATH  Google Scholar 

  44. Wang, C.P., Xin, Z.P.: Smooth transonic flows of meyer type in De Laval Nozzles. Arch. Ration. Mech. Anal. 232, 1597–1647, 2019

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, T., Zheng, Y.X.: Conjecture on the structure of solution of the Riemann problem for 2D gas dynamics system. SIAM J. Math. Anal. 21, 593–630, 1990

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Zhang, T., Zheng, Y.X.: Axisymmetric solutions of the Euler equations for polytropic gases. Arch. Ration. Mech. Anal. 142, 253–279, 1998

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, T.Y., Zheng, Y.X.: Sonic-supersonic solutions for the steady Euler equations. Indiana Univ. Math. J. 63, 1785–1817, 2014

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, W.X.: The expansion of gas from a wedge with small angle into a vacuum. Commun. Pure Appl. Anal. 12, 2319–1330, 2013

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, Y.X.: Systems of Conservation Laws: 2-D Riemann Problems. 38 PNLDE, \(Bikh\ddot{a}user\), Boston (2001)

  50. Zheng, Y.X.: Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discret. Contin. Dyn. Syst. 23, 605–616, 2009

    Article  MathSciNet  MATH  Google Scholar 

  51. Zheng, Y.X.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. (Engl. Ser.) 22, 177–210 (2006)

  52. Zheng, X.L.: The centered wave solution with large amplitude for quasilinear hyperbolic systems. Northeasten Math. J. 3, 439–451, 1997. (in Chinese)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors would like to thank the anonymous referees for their careful reading on the original manuscript and helpful suggestions and comments, which greatly improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wancheng Sheng.

Additional information

Communicated by T. Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author was supported by NSFC 12071278. The research of the second author was supported by NSFC 11771274.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, G., Sheng, W. Two-Dimensional Pseudosteady Flows Around a Sharp Corner. Arch Rational Mech Anal 241, 805–884 (2021). https://doi.org/10.1007/s00205-021-01665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01665-0

Navigation